Intrinsic and extrinsic measurement for Brownian motion

被引:13
作者
Castro-Villarreal, Pavel [1 ]
机构
[1] Univ Autonoma Chiapas, Ctr Estudios Fis & Matemat Basicas & Aplicadas, Tuxtla Gutierrez 29050, Chiapas, Mexico
关键词
soap films; surface diffusion (theory); vesicles and membranes; diffusion; BIOLOGICAL-MEMBRANES; DIFFUSION; SURFACES; SHAPE;
D O I
10.1088/1742-5468/2014/05/P05017
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Based upon the Smoluchowski equation on curved manifolds, three physical observables are considered for Brownian displacement, namely geodesic displacement s, Euclidean displacement delta R, and projected displacement delta R-perpendicular to. The Weingarten-Gauss equations are used to calculate the mean-square Euclidean displacements in the short-time regime. Our findings show that from an extrinsic point of view the geometry of the space affects the Brownian motion in such a way that the particle's diffusion is decelerated, contrasting with the intrinsic point of view where dynamics is controlled by the sign of the Gaussian curvature (Castro-Villarreal, 2010 J. Stat. Mech. P08006). Furthermore, it is possible to give exact formulas for <delta R > and <delta R-2 > on spheres and minimal surfaces, which are valid for all values of time. In the latter case, surprisingly, Brownian motion corresponds to the usual diffusion in flat geometries, albeit minimal surfaces have non-zero Gaussian curvature. Finally, the two-dimensional case is emphasized due to its close relation to surface self-diffusion in fluid membranes.
引用
收藏
页数:18
相关论文
共 39 条
[1]   Plasma membrane topography and interpretation of single-particle tracks [J].
Adler, Jeremy ;
Shevchuk, Andrew I. ;
Novak, Pavel ;
Korchev, Yuri E. ;
Parmryd, Ingela .
NATURE METHODS, 2010, 7 (03) :170-171
[2]   DIFFUSION OF MOLECULES ON BIOLOGICAL-MEMBRANES OF NONPLANAR FORM - A THEORETICAL-STUDY [J].
AIZENBUD, BM ;
GERSHON, ND .
BIOPHYSICAL JOURNAL, 1982, 38 (03) :287-293
[3]   NONLINEAR ELECTRODYNAMICS NEAR A SUPERCONDUCTING STRING [J].
AMSTERDAMSKI, P ;
OCONNOR, D .
NUCLEAR PHYSICS B, 1988, 298 (02) :429-444
[4]   B8 HAMIDEW COEFFICIENT FOR A SCALAR FIELD [J].
AMSTERDAMSKI, P ;
BERKIN, AL ;
OCONNOR, DJ .
CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (12) :1981-1991
[5]   SELF-DIFFUSION IN BICONTINUOUS CUBIC PHASES, L3 PHASES, AND MICROEMULSIONS [J].
ANDERSON, DM ;
WENNERSTROM, H .
JOURNAL OF PHYSICAL CHEMISTRY, 1990, 94 (24) :8683-8694
[6]   Mode regularization of the configuration space path integral in curved space [J].
Bastianelli, F ;
Corradini, O .
PHYSICAL REVIEW D, 1999, 60 (04)
[8]   Brownian motion meets Riemann curvature [J].
Castro-Villarreal, Pavel .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
[9]  
Chaichian M., 2001, PATH INTEGRALS PHYS, V1, DOI DOI 10.1201/9781315273358
[10]  
Chavel I., 1984, EIGENVALUES RIEMANNI