On the regularity of American options with regime-switching uncertainty

被引:8
作者
Jacka, Saul D. [1 ,2 ]
Ocejo, Adriana [3 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[2] Alan Turing Inst, British Lib, 96 Euston Rd, London NW1 2DB, England
[3] Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
基金
英国工程与自然科学研究理事会;
关键词
Regime-switching; Markov-modulated; Time-change; Coupling; American option; Initial boundary value problem;
D O I
10.1016/j.spa.2017.06.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the regularity of the stochastic representation of the solution of a class of initial-boundary value problems related to a regime-switching diffusion. This representation is related to the value function of a finite-horizon optimal stopping problem such as the price of an American-style option in finance. We show continuity and smoothness of the value function using coupling and time-change techniques. As an application, we find the minimal payoff scenario for the holder of an American-style option in the presence of regime-switching uncertainty under the assumption that the transition rates are known to lie within level-dependent compact sets. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:803 / 818
页数:16
相关论文
共 25 条
[1]   Identification of speculative bubbles using state-space models with Markov-switching [J].
Al-Anaswah, Nael ;
Wilfling, Bernd .
JOURNAL OF BANKING & FINANCE, 2011, 35 (05) :1073-1086
[2]  
[Anonymous], 2014, Quantitative Energy Finance, DOI [DOI 10.1007/978-1-4614-7248-3_2, DOI 10.1007/978-1-4614-7248-3], Patent No. 012014
[3]  
[Anonymous], 2002, HDB BROWNIAN MOTION, DOI DOI 10.1007/978-3-0348-8163-0
[4]  
[Anonymous], 2007, STOCHASTIC DIFFERENT
[5]   MONOTONICITY OF THE VALUE FUNCTION FOR A TWO-DIMENSIONAL OPTIMAL STOPPING PROBLEM [J].
Assing, Sigurd ;
Jacka, Saul ;
Ocejo, Adriana .
ANNALS OF APPLIED PROBABILITY, 2014, 24 (04) :1554-1584
[6]  
Baran N.A., 2013, ADV DIFFER EQU, V2013, P1
[7]   On the Continuity of Stochastic Exit Time Control Problems [J].
Bayraktar, Erhan ;
Song, Qingshuo ;
Yang, Jie .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2011, 29 (01) :48-60
[8]  
Buffington J., 2002, INT J THEORETICAL AP, V5, P497, DOI DOI 10.1142/S0219024902001523
[9]   Local martingales, bubbles and option prices [J].
Cox, AMG ;
Hobson, DG .
FINANCE AND STOCHASTICS, 2005, 9 (04) :477-492
[10]  
Diebold F. X., 1994, Business Cycles: Durations, Dynamics, and Forecasting, P283