Smith forms of circulant polynomial matrices

被引:0
作者
Telloni, Agnese Ilaria [1 ]
Williams, Gerald [2 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind Sci & Matemat, I-60131 Ancona, Italy
[2] Univ Essex, Dept Math Sci, Colchester CO4 3SQ, Essex, England
关键词
Smith normal form; Circulant matrix; Polynomial matrix;
D O I
10.1016/j.laa.2014.06.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain the Smith normal forms of a class of circulant polynomial matrices (lambda-matrices) in terms of their "associated polynomials" when these polynomials do not have repeated roots. We apply this to the case when the associated polynomials are products of cyclotomic polynomials and show that the entries of the Smith normal form are products of cyclotomics. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:559 / 572
页数:14
相关论文
共 8 条
[1]  
Davis P. J., 1994, Circulant Matrices
[2]   SOLVING SYSTEMS OF LINEAR-EQUATIONS OVER POLYNOMIALS [J].
KANNAN, R .
THEORETICAL COMPUTER SCIENCE, 1985, 39 (01) :69-88
[3]  
Lin Yuan-Pei, 2002, IEEE SIGNAL PROCESS, V9
[4]  
Newman M, 1972, Integral matrices, V45
[5]  
Petrichkovich V.M., 1987, J SOVIET MATH, V66, P2030
[6]   A fast Las Vegas algorithm for computing the Smith normal form of a polynomial matrix [J].
Storjohann, A ;
Labahn, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 253 :155-173
[7]   Generalized subresultants for computing the Smith normal form of polynomial matrices [J].
Villard, G .
JOURNAL OF SYMBOLIC COMPUTATION, 1995, 20 (03) :269-286
[8]   A local construction of the Smith normal form of a matrix polynomial [J].
Wilkening, Jon ;
Yu, Jia .
JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (01) :1-22