Hamilton cycles in claw-heavy graphs

被引:10
作者
Chen, Bing [2 ]
Zhang, Shenggui [1 ]
Qiao, Shengning [1 ]
机构
[1] NW Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
[2] Xian Univ Technol, Dept Appl Math, Xian 710048, Shaanxi, Peoples R China
关键词
Hamilton cycle; 2-heavy graph; Claw-heavy graph;
D O I
10.1016/j.disc.2008.04.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G on n >= 3 vertices is called claw-heavy if every induced claw (K-1,K-3) of G has a pair of nonadjacent vertices such that their degree sum is at least n. In this paper we show that a claw-heavy graph G has a Hamilton cycle if we impose certain additional conditions on G involving numbers of common neighbors of some specific pair of nonadjacent vertices, or forbidden induced subgraphs. Our results extend two previous theorems of Broersma, Ryjacek and Schiermeyer [H.J. Broersma, Z. Ryjacek, I. Schiermeyer, Dirac's minimum degree condition restricted to claws, Discrete Math. 167-168 (1997) 155-166], on the existence of Hamilton cycles in 2-heavy graphs. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2015 / 2019
页数:5
相关论文
共 13 条
[1]   A GENERALIZATION OF FAN CONDITION FOR HAMILTONICITY, PANCYCLICITY, AND HAMILTONIAN CONNECTEDNESS [J].
BEDROSSIAN, P ;
CHEN, G ;
SCHELP, RH .
DISCRETE MATHEMATICS, 1993, 115 (1-3) :39-50
[2]   CYCLES THROUGH SPECIFIED VERTICES [J].
BOLLOBAS, B ;
BRIGHTWELL, G .
COMBINATORICA, 1993, 13 (02) :147-155
[3]  
Bondy J. A., 1980, Longest Paths and Cycles in Graphs of High Degree
[4]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[5]  
Broersma Hajo., 1990, CONT METHODS GRAPH T, P181
[6]   Dirac's minimum degree condition restricted to claws [J].
Broersma, HJ ;
Ryjacek, Z ;
Schiermeyer, I .
DISCRETE MATHEMATICS, 1997, 167 :155-166
[7]  
Chvatal V., 1972, Discrete Math, V2, P111, DOI DOI 10.1016/0012-365X(72)90079-9
[8]  
Dirac G.A., 1952, Proc. Lond. Math. Soc., V2, P69, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
[9]   NEW SUFFICIENT CONDITIONS FOR CYCLES IN GRAPHS [J].
FAN, GH .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (03) :221-227
[10]  
Faudree R.J., 1995, J. Combin. Math. Combin. Comput, V19, P109