Spectral analysis of q-difference equations with spectral singularities

被引:36
作者
Adivar, M
Bohner, M
机构
[1] Univ Missouri, Dept Math & Stat, Rolla, MO 65409 USA
[2] Izmir Univ Econ, Fac Sci & Literature, Dept Math, TR-35330 Izmir, Turkey
关键词
spectral analysis; q-difference equation; spectral singularity; eigenvalue;
D O I
10.1016/j.mcm.2005.04.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we investigate the eigenvalues and the spectral singularities of non-selfadjoint q-difference equations of second order with spectral singularities. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:695 / 703
页数:9
相关论文
共 25 条
[1]   Spectral properties of non-selfadjoint difference operators [J].
Adivar, M ;
Bairamov, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 261 (02) :461-478
[2]  
Agarwal RP, 2000, MONOGRAPHS TXB PURE, V228
[3]  
[Anonymous], 1967, AM MATH SOC T SERIES
[4]  
[Anonymous], MATH ITS APPL
[5]  
[Anonymous], 1967, AM MATH SOC T SERIES
[6]  
Bairamov E, 2001, INDIAN J PURE AP MAT, V32, P851
[7]  
Bairamov E, 2001, MATH NACHR, V229, P5, DOI 10.1002/1522-2616(200109)229:1<5::AID-MANA5>3.0.CO
[8]  
2-C
[9]   Spectrum and spectral expansion for the non-selfadjoint discrete Dirac operators [J].
Bairamov, E ;
Çelebi, AO .
QUARTERLY JOURNAL OF MATHEMATICS, 1999, 50 (200) :371-384
[10]   Quadratic pencil of Schrodinger operators with spectral singularities: Discrete spectrum and principal functions [J].
Bairamov, E ;
Cakar, O ;
Celebi, AO .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 216 (01) :303-320