Counting elliptic curves in K3 surfaces

被引:4
作者
Lee, Junho [1 ]
Leung, Naichung Conan [1 ]
机构
[1] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
关键词
D O I
10.1090/S1056-3911-06-00439-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the genus g = 1 family GW-invariants of K3 surfaces for non-primitive classes. These calculations verify the Gottsche-Yau-Zaslow formula for non-primitive classes with index two. Our approach is to use the genus two topological recursion formula and the symplectic sum formula to establish relationships among various generating functions.
引用
收藏
页码:591 / 601
页数:11
相关论文
共 14 条
[1]   The enumerative geometry of K3 surfaces and modular forms [J].
Bryan, J ;
Leung, NC .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (02) :371-410
[2]  
Bryan J., 1999, SURV DIFFER GEOM, V5, P313
[3]  
GETZLER E, 1997, INTEGRABLE SYSTEMS A, V198
[4]   A conjectural generating function for numbers of curves on surfaces [J].
Gottsche, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 196 (03) :523-533
[5]   The symplectic sum formula for Gromov-Witten invariants [J].
Ionel, EN ;
Parker, TH .
ANNALS OF MATHEMATICS, 2004, 159 (03) :935-1025
[6]   Relations between the correlators of the topological sigma-model coupled to gravity [J].
Kontsevich, M ;
Manin, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 196 (02) :385-398
[7]   Yau-Zaslow formula on K3 surfaces for non-primitive classes [J].
Lee, J ;
Leung, NC .
GEOMETRY & TOPOLOGY, 2005, 9 :1977-2012
[8]   Family Gromov-Witten invariants for Kahler surfaces [J].
Lee, J .
DUKE MATHEMATICAL JOURNAL, 2004, 123 (01) :209-233
[9]  
LEE J, IN PRESS COMM ANAL G
[10]  
Li Jun., 1998, First Int. Press Lect, P47