Cartilage engineering: a crucial combination of cells, biomaterials and biofactors

被引:353
作者
Vinatier, Claire [4 ,5 ,6 ]
Mrugala, Dorninique [1 ,2 ]
Jorgensen, Christian [1 ,2 ,3 ]
Guicheux, Jerome [5 ,6 ]
Noel, Daniele [1 ,2 ]
机构
[1] INSERM, U844, F-34091 Montpellier, France
[2] Univ Montpellier 1, UFR Med, F-34000 Montpellier, France
[3] Hop Lapeyronie, Serv Immunorhumatol, F-34295 Montpellier, France
[4] Graftys SARL, F-13854 Aix En Provence, France
[5] Univ Nantes, UFR Odontol, F-44042 Nantes, France
[6] LIOAD, INSERM, U791, F-44042 Nantes, France
关键词
MESENCHYMAL STEM-CELLS; HUMAN ARTICULAR CHONDROCYTES; BONE MORPHOGENETIC PROTEINS; FIBROBLAST GROWTH FACTOR-2; IN-VITRO; PROGENITOR CELLS; STROMAL CELLS; CHONDROGENIC DIFFERENTIATION; ENDOCHONDRAL SKELETON; HYALINE CARTILAGE;
D O I
10.1016/j.tibtech.2009.02.005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Injuries to articular cartilage are one of the most challenging issues of musculoskeletal medicine due to the poor intrinsic ability of this tissue for repair. The lack of efficient modalities of treatment has prompted research into tissue engineering combining chondrogenic cells, scaffold materials and environmental factors. The aim of this review is to focus on the recent advances made in exploiting the potential of biomaterial-assisted cell therapy for cartilage engineering. We discuss the requirements for identifying additional specific growth factors and evaluating the optimal combination of cells, growth factors and scaffolds that is able to respond to the functional demand placed upon cartilage tissue replacement in clinics. Finally, some of the major obstacles encountered in cartilage engineering are discussed, as well as future trends in clinical applications.
引用
收藏
页码:307 / 314
页数:8
相关论文
共 91 条
[1]   Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage [J].
Alsalameh, S ;
Amin, R ;
Gemba, T ;
Lotz, M .
ARTHRITIS AND RHEUMATISM, 2004, 50 (05) :1522-1532
[2]   Enhancing tissue integration in cartilage repair procedures [J].
Archer, Charles W. ;
Redman, Samantha ;
Khan, Ilyas ;
Bishop, Joanna ;
Richardson, Kirsty .
JOURNAL OF ANATOMY, 2006, 209 (04) :481-493
[3]   Normal and pathological adaptations of articular cartilage to joint loading [J].
Arokoski, JPA ;
Jurvelin, JS ;
Väätäinen, U ;
Helminen, HJ .
SCANDINAVIAN JOURNAL OF MEDICINE & SCIENCE IN SPORTS, 2000, 10 (04) :186-198
[4]   Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds [J].
Awad, HA ;
Wickham, MQ ;
Leddy, HA ;
Gimble, JM ;
Guilak, F .
BIOMATERIALS, 2004, 25 (16) :3211-3222
[5]   Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide [J].
Betre, H ;
Ong, SR ;
Guilak, F ;
Chilkoti, A ;
Fermor, B ;
Setton, LA .
BIOMATERIALS, 2006, 27 (01) :91-99
[6]  
Bhatia Rinky, 2005, Congest Heart Fail, V11, P87, DOI 10.1111/j.1527-5299.2005.03618.x
[7]   REEXPRESSION OF CARTILAGE-SPECIFIC GENES BY DEDIFFERENTIATED HUMAN ARTICULAR CHONDROCYTES CULTURED IN ALGINATE BEADS [J].
BONAVENTURE, J ;
KADHOM, N ;
COHENSOLAL, L ;
NG, KH ;
BOURGUIGNON, J ;
LASSELIN, C ;
FREISINGER, P .
EXPERIMENTAL CELL RESEARCH, 1994, 212 (01) :97-104
[8]   TREATMENT OF DEEP CARTILAGE DEFECTS IN THE KNEE WITH AUTOLOGOUS CHONDROCYTE TRANSPLANTATION [J].
BRITTBERG, M ;
LINDAHL, A ;
NILSSON, A ;
OHLSSON, C ;
ISAKSSON, O ;
PETERSON, L .
NEW ENGLAND JOURNAL OF MEDICINE, 1994, 331 (14) :889-895
[9]   Bone morphogenetic proteins, their antagonists, and the skeleton [J].
Canalis, E ;
Economides, AN ;
Gazzerro, E .
ENDOCRINE REVIEWS, 2003, 24 (02) :218-235
[10]   In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells [J].
Chen, JW ;
Wang, CY ;
Lü, SH ;
Wu, JZ ;
Guo, XM ;
Duan, CM ;
Dong, LZ ;
Song, Y ;
Zhang, JC ;
Jing, DY ;
Wu, LB ;
Ding, JD ;
Li, DX .
CELL AND TISSUE RESEARCH, 2005, 319 (03) :429-438