Dramatic stiffening of ultrathin polymer films in the rubbery regime

被引:65
作者
O'Connell, P. A. [1 ]
McKenna, G. B. [1 ]
机构
[1] Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA
关键词
D O I
10.1140/epje/i2005-10125-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recently, we (P.A. O'Connell, G.B. McKenna, Science 307, 1760 (2005)) introduced a novel nano-bubble inflation method to measure the absolute creep compliance of nanometer thick polymer films. In that work it was shown that even at film thicknesses as small as 27.5nm the glass temperature was unchanged for poly(vinyl acetate) (PVAc). Perhaps more importantly, and the subject of the present work, was the observation that these ultrathin films show a dramatic stiffening in the rubbery plateau regime, i.e., the compliance was reduced by over two orders of magnitude compared to the bulk material. In the present work we substantiate the previous results in a study of the thickness dependence of the rubbery compliance of PVAc and polystyrene (PS) films for thicknesses from 13nm to 276nm. We show the substantial stiffening of the plateau region for both materials. Furthermore, the rubbery compliance (inverse of stiffness) scales with approximately the second power (1.8 +/- 0.2) in the film thickness for both materials.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 30 条
[1]   Effects of confinement on material behaviour at the nanometre size scale [J].
Alcoutlabi, M ;
McKenna, GB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (15) :R461-R524
[2]   CONFORMATION OF POLYMER-CHAIN IN BULK [J].
COTTON, JP ;
DECKER, D ;
BENOIT, H ;
FARNOUX, B ;
HIGGINS, J ;
JANNINK, G ;
OBER, R ;
PICOT, C ;
CLOIZEAU.JD .
MACROMOLECULES, 1974, 7 (06) :863-872
[3]   Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films [J].
Dalnoki-Veress, K ;
Forrest, JA ;
Murray, C ;
Gigault, C ;
Dutcher, JR .
PHYSICAL REVIEW E, 2001, 63 (03)
[4]   Interface and surface effects on the glass transition in thin polystyrene films [J].
DeMaggio, GB ;
Frieze, WE ;
Gidley, DW ;
Zhu, M ;
Hristov, HA ;
Yee, AF .
PHYSICAL REVIEW LETTERS, 1997, 78 (08) :1524-1527
[5]   Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels [J].
Ellison, CJ ;
Torkelson, JM .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2002, 40 (24) :2745-2758
[6]   The distribution of glass-transition temperatures in nanoscopically confined glass formers [J].
Ellison, CJ ;
Torkelson, JM .
NATURE MATERIALS, 2003, 2 (10) :695-700
[7]   Confinement and processing effects on glass transition temperature and physical aging in ultrathin polymer films: Novel fluorescence measurements [J].
Ellison, CJ ;
Kim, SD ;
Hall, DB ;
Torkelson, JM .
EUROPEAN PHYSICAL JOURNAL E, 2002, 8 (02) :155-166
[8]   Qualitative discrepancy between different measures of dynamics in thin polymer films [J].
Fakhraai, Z ;
Valadkhan, S ;
Forrest, JA .
EUROPEAN PHYSICAL JOURNAL E, 2005, 18 (02) :143-148
[9]  
Ferry D.J., 1980, Viscoelastic Properties of Polymers, V3e
[10]   Effect of free surfaces on the glass transition temperature of thin polymer films [J].
Forrest, JA ;
DalnokiVeress, K ;
Stevens, JR ;
Dutcher, JR .
PHYSICAL REVIEW LETTERS, 1996, 77 (10) :2002-2005