Solid-state microscale lithium batteries prepared with microfabrication processes

被引:44
作者
Song, Jie [1 ,2 ]
Yang, Xi [1 ,2 ]
Zeng, Shuang-Shuang [1 ,2 ]
Cai, Min-Zhen [3 ]
Zhang, Liang-Tang [3 ]
Dong, Quan-Feng [1 ,2 ]
Zheng, Ming-Sen [1 ,2 ]
Wu, Sun-Tao [4 ]
Wu, Qi-Hui [5 ]
机构
[1] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Dept Chem, Xiamen 361005, Peoples R China
[3] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
[4] Xiamen Univ, Pen Tung Sah MEMS Res Ctr, Xiamen 361005, Peoples R China
[5] La Trobe Univ, Dept Phys, Bundoora, Vic 3086, Australia
关键词
THIN-FILM LITHIUM; PULSED-LASER DEPOSITION; METHANOL FUEL-CELL; PHOSPHORUS OXYNITRIDE; ION BATTERIES; NEGATIVE ELECTRODE; FABRICATION; MICROBATTERIES; ANODE; MEMS;
D O I
10.1088/0960-1317/19/4/045004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The miniaturization of power sources is important for meeting the requirements of low power, mass and volume for nano- or microelectronics and MEMS devices. In this paper a dexterous microfabrication process was developed for preparing microscale solid-state lithium batteries. The active size of a single microbattery is 500 mu m x 500 mu m and its thickness is 1.5 mu m. LiCoO2 films prepared by RF sputtering, then annealed at moderate temperature (500 degrees C), were employed as a cathode electrode, and LiPON and Al films were used as a solid electrolyte and an anode electrode, respectively. An individual microbattery delivers a capacity of about 17 nAh at a current of 5 nA at the initial cycles, and can be operated at as high as 40 nA discharge current.
引用
收藏
页数:6
相关论文
共 28 条
[1]   High energy density all-solid-state batteries: A challenging concept towards 3D integration [J].
Baggetto, Loic ;
Niessen, Rogier A. H. ;
Roozeboom, Fred ;
Notten, Peter H. L. .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (07) :1057-1066
[2]   Thin-film lithium and lithium-ion batteries [J].
Bates, JB ;
Dudney, NJ ;
Neudecker, B ;
Ueda, A ;
Evans, CD .
SOLID STATE IONICS, 2000, 135 (1-4) :33-45
[3]   A micro-solid oxide fuel cell system as battery replacement [J].
Bieberle-Huetter, Anja ;
Beckel, Daniel ;
Infortuna, Anna ;
Muecke, Ulrich P. ;
Rupp, Jennifer L. M. ;
Gauckler, Ludwig J. ;
Rey-Mermet, Samuel ;
Muralt, Paul ;
Bieri, Nicole R. ;
Hotz, Nico ;
Stutz, Michael J. ;
Poulikakos, Dimos ;
Heeb, Peter ;
Mueller, Patrik ;
Bernard, Andr ;
Gmuer, Roman ;
Hocker, Thomas .
JOURNAL OF POWER SOURCES, 2008, 177 (01) :123-130
[4]   Aluminum-anode, silicon-based micro-cells for powering expendable MEMS and lab-on-a-chip devices [J].
Cardenas-Valencia, A. M. ;
Dlutowski, J. ;
Knighton, S. ;
Biver, C. J. ;
Bumgarner, J. ;
Langebrake, L. .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 122 (01) :328-336
[5]   Fabrication of high-aspect-ratio electrode arrays for three-dimensional microbatteries [J].
Chamran, Fardad ;
Yeh, Yuting ;
Min, Hong-Seok ;
Dunn, Bruce ;
Kim, Chang-Jin .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2007, 16 (04) :844-852
[6]   Radio-frequency magnetron sputtering power effect on the ionic conductivities of upon films [J].
Choi, CH ;
Cho, WI ;
Cho, BW ;
Kim, HS ;
Yoon, YS ;
Tak, YS .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (01) :A14-A17
[7]   Nanocrystalline LixMn2-yO4 cathodes for solid-state thin-film rechargeable lithium batteries [J].
Dudney, NJ ;
Bates, JB ;
Zuhr, RA ;
Young, S ;
Robertson, JD ;
Jun, HP ;
Hackney, SA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (07) :2455-2464
[8]   Aluminum negative electrode in lithium ion batteries [J].
Hamon, Y ;
Brousse, T ;
Jousse, F ;
Topart, P ;
Buvat, P ;
Schleich, DM .
JOURNAL OF POWER SOURCES, 2001, 97-8 :185-187
[9]   Charge transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium cobalt oxide thin film interface [J].
Iriyama, Y ;
Kako, T ;
Yada, C ;
Abe, T ;
Ogumi, Z .
SOLID STATE IONICS, 2005, 176 (31-34) :2371-2376
[10]   Design, fabrication and testing of a silicon-based air-breathing micro direct methanol fuel cell [J].
Jiang, Yingqi ;
Wang, Xiaohong ;
Zhong, Lingyan ;
Liu, Litian .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2006, 16 (09) :S233-S239