A numerical method for a system of singularly perturbed reaction-diffusion equations

被引:80
作者
Matthews, S
O'Riordan, E [1 ]
Shishkin, GI
机构
[1] Dublin City Univ, Sch Math Sci, Dublin, Ireland
[2] Russian Acad Sci, Inst Math & Mech, Ekaterinburg, Russia
基金
俄罗斯基础研究基金会;
关键词
system; reaction-diffusion; singular perturbation; parameter-uniform;
D O I
10.1016/S0377-0427(01)00541-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Dirichlet problem for a system of two coupled singularly perturbed reaction-diffusion ordinary differential equations is examined. A numerical method whose solutions converge pointwise at all points of the domain independently of the singular perturbation parameters is constructed and analysed. Numerical results are presented, which illustrate the theoretical results. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:151 / 166
页数:16
相关论文
共 50 条
[41]   Combined finite volume element method for singularly perturbed reaction-diffusion problems [J].
Phongthanapanich, Sutthisak ;
Dechaumphai, Pramote .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (02) :177-185
[42]   Singularly perturbed problem for non-local reaction-diffusion equations involving two small parameters [J].
程荣军 .
Journal of Shanghai University, 2006, (06) :479-483
[43]   A robust domain decomposition method for singularly perturbed parabolic reaction-diffusion systems [J].
Sunil Kumar ;
Joginder Singh ;
Mukesh Kumar .
Journal of Mathematical Chemistry, 2019, 57 :1557-1578
[44]   A robust domain decomposition method for singularly perturbed parabolic reaction-diffusion systems [J].
Kumar, Sunil ;
Singh, Joginder ;
Kumar, Mukesh .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2019, 57 (05) :1557-1578
[45]   ANALYSIS OF AN ALTERNATING DIRECTION METHOD APPLIED TO SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEMS [J].
Linss, Torsten ;
Madden, Niall .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2010, 7 (03) :507-519
[46]   A parameter robust numerical method for a system of two singularly perturbed convection-diffusion equations [J].
Bellew, S ;
O'Riordan, E .
APPLIED NUMERICAL MATHEMATICS, 2004, 51 (2-3) :171-186
[47]   Numerical analysis of singularly perturbed parabolic reaction diffusion differential difference equations [J].
Bansal, Komal ;
Sharma, Kapil K. ;
Kaushik, Aditya ;
Babu, Gajendra .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (02) :217-235
[48]   The nonlinear nonlocal singularly perturbed problems for reaction diffusion equations [J].
Mo, JQ ;
Zhu, J .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2003, 24 (05) :527-531
[49]   Higher Order Uniformly Convergent Numerical Scheme for Singularly Perturbed Reaction-Diffusion Problems [J].
Anilay, Worku Tilahun ;
Duressa, Gemechis File ;
Woldaregay, Mesfin Mekuria .
KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (03) :591-612
[50]   The nonlinear nonlocal singularly perturbed problems for reaction diffusion equations [J].
Mo Jia-qi ;
Zhu Jiang .
Applied Mathematics and Mechanics, 2003, 24 (5) :527-531