Higgs branch localization in three dimensions

被引:80
作者
Benini, Francesco [1 ]
Peelaers, Wolfger [2 ]
机构
[1] SUNY Stony Brook, Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
Supersymmetric gauge theory; Solitons Monopoles and Instantons; Chern-Simons Theories; Nonperturbative Effects; SUPERSYMMETRIC GAUGE-THEORIES; ELLIPTIC GENERA;
D O I
10.1007/JHEP05(2014)030
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show that the supersymmetric partition function of three-dimensional N = 2 R-symmetric Chern-Simons-matter theories on the squashed S-3 and on S-2 x S-1 can be computed with the so-called Higgs branch localization method, alternative to the more standard Coulomb branch localization. For theories that could be completely Higgsed by Fayet-Iliopoulos terms, the path integral is dominated by BPS vortex strings sitting at two circles in the geometry. In this way, the partition function directly takes the form of a sum, over a finite number of points on the classical Coulomb branch, of a vortex-string times an antivortex-string partition functions.
引用
收藏
页数:47
相关论文
共 66 条
[1]   Aspects of N=2 supersymmetric gauge theories in three dimensions [J].
Aharony, O ;
Hanany, A ;
Intriligator, K ;
Seiberg, N ;
Strassler, MJ .
NUCLEAR PHYSICS B, 1997, 499 (1-2) :67-99
[2]   3d dualities from 4d dualities [J].
Aharony, Ofer ;
Razamat, Shlomo S. ;
Seiberg, Nathan ;
Willett, Brian .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (07)
[3]  
Alday L.F., ARXIV13076848
[4]   The large N limit of M2-branes on Lens spaces [J].
Alday, Luis F. ;
Fluder, Martin ;
Sparks, James .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (10)
[5]  
[Anonymous], ARXIV09073987
[6]  
Atiyah M.F., 1974, Elliptic Operators and Compact Groups, V401, DOI 10.1007/BFb0057821
[7]  
Beem C., ARXIV12111986
[8]  
Benini F, 2015, COMMUN MATH PHYS, V334, P1483, DOI 10.1007/s00220-014-2112-z
[9]  
Benini F, 2015, COMMUN MATH PHYS, V333, P1241, DOI 10.1007/s00220-014-2210-y
[10]  
Benini F, 2014, LETT MATH PHYS, V104, P465, DOI 10.1007/s11005-013-0673-y