Combined finite volume element method for singularly perturbed reaction-diffusion problems

被引:15
|
作者
Phongthanapanich, Sutthisak [2 ]
Dechaumphai, Pramote [1 ]
机构
[1] Chulalongkorn Univ, Fac Engn, Dept Mech Engn, Bangkok 10330, Thailand
[2] King Mongkuts Univ Technol N Bangkok, Coll Ind Technol, Dept Mech Engn Technol, Tokyo 1080071, Japan
关键词
Finite volume element method; High-order scheme; Reaction-diffusion; Singularly perturbated; Explicit scheme; PARABOLIC PROBLEMS; EQUATIONS; APPROXIMATION;
D O I
10.1016/j.amc.2008.10.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A finite volume element method is presented for solving singularly perturbed reaction-diffusion problems in two-dimensional domain. The concept of the finite volume method is used to discretize the unsteady scalar reaction-diffusion equation, while the finite element method is applied to estimate the gradient quantities at cell faces. The error estimate in a discrete H-0(1) norm for the approximate solution of one-dimensional stationary reaction-diffusion equation is also proved. Numerical solutions of the singularly perturbed reaction diffusion problems on two-dimensional uniformly rectangular grids are presented to demonstrate the robustness and efficiency of the combined method. The numerical solutions demonstrate that the combined method is stable and provides accurate solution without spurious oscillation along the high-gradient boundary layers. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:177 / 185
页数:9
相关论文
共 50 条
  • [21] A balanced finite element method for a system of singularly perturbed reaction-diffusion two-point boundary value problems
    Runchang Lin
    Martin Stynes
    Numerical Algorithms, 2015, 70 : 691 - 707
  • [22] Finite volume element method for analysis of unsteady reaction-diffusion problems
    Sutthisak Phongthanapanich
    Pramote Dechaumphai
    Acta Mechanica Sinica, 2009, 25 (04) : 481 - 489
  • [23] Finite volume element method for analysis of unsteady reaction-diffusion problems
    Phongthanapanich, Sutthisak
    Dechaumphai, Pramote
    ACTA MECHANICA SINICA, 2009, 25 (04) : 481 - 489
  • [24] Accelerated fitted operator finite difference method for singularly perturbed parabolic reaction-diffusion problems
    Bullo, Tesfaye Aga
    Duressa, Gemechis File
    Degla, Guy Aymard
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (03): : 886 - 898
  • [25] Convergence and superconvergence analysis of an anisotropic nonconforming finite element methods for singularly perturbed reaction-diffusion problems
    Zhu, Guoqing
    Chen, Shaochun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (10) : 3048 - 3063
  • [26] A finite element analysis of a coupled system of singularly perturbed reaction-diffusion equations
    Linss, T
    Madden, N
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (03) : 869 - 880
  • [27] A fitted numerical method for singularly perturbed parabolic reaction-diffusion problems
    Munyakazi, Justin B.
    Patidar, Kailash C.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (03): : 509 - 519
  • [28] A fitted numerical method for singularly perturbed parabolic reaction-diffusion problems
    Justin B. Munyakazi
    Kailash C. Patidar
    Computational and Applied Mathematics, 2013, 32 : 509 - 519
  • [29] Convergence Analysis of the LDG Method for Singularly Perturbed Reaction-Diffusion Problems
    Mei, Yanjie
    Wang, Sulei
    Xu, Zhijie
    Song, Chuanjing
    Cheng, Yao
    SYMMETRY-BASEL, 2021, 13 (12):
  • [30] A WEAK GALERKIN FINITE ELEMENT METHOD FOR SINGULARLY PERTURBED CONVECTION-DIFFUSION-REACTION PROBLEMS
    Lin, Runchang
    Ye, Xiu
    Zhang, Shangyou
    Zhu, Peng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) : 1482 - 1497