GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR FOR THE 3D COMPRESSIBLE NON-ISENTROPIC EULER EQUATIONS WITH DAMPING

被引:13
作者
Zhang, Yinghui [1 ,2 ]
Wu, Guochun [3 ]
机构
[1] Hunan Inst Sci & Technol, Dept Math, Yueyang 414006, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Euler equations with damping; global existence; asymptotic behavior; NONLINEAR DIFFUSION WAVES; BOUNDARY VALUE-PROBLEM; LARGE TIME BEHAVIOR; P-SYSTEM; CONVERGENCE-RATES;
D O I
10.1016/S0252-9602(14)60016-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the global existence and asymptotic behavior of classical solutions for the 3D compressible non-isentropic damped Euler equations on a periodic domain The global existence and uniqueness of classical solutions are obtained when the initial data is near an equilibrium. Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.
引用
收藏
页码:424 / 434
页数:11
相关论文
共 37 条