Modeling of Membrane Bioreactor of Wastewater Treatment Using Support Vector Machine
被引:4
|
作者:
Yasmin, Nur Sakinah Ahmad
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Fac Elect Engn, Control & Mechatron Engn, Skudai 81310, Johor Bahru, MalaysiaUniv Teknol Malaysia, Fac Elect Engn, Control & Mechatron Engn, Skudai 81310, Johor Bahru, Malaysia
Yasmin, Nur Sakinah Ahmad
[1
]
Wahab, Norhaliza Abdul
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Fac Elect Engn, Control & Mechatron Engn, Skudai 81310, Johor Bahru, MalaysiaUniv Teknol Malaysia, Fac Elect Engn, Control & Mechatron Engn, Skudai 81310, Johor Bahru, Malaysia
Wahab, Norhaliza Abdul
[1
]
Yusuf, Zakariah
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Fac Elect Engn, Control & Mechatron Engn, Skudai 81310, Johor Bahru, MalaysiaUniv Teknol Malaysia, Fac Elect Engn, Control & Mechatron Engn, Skudai 81310, Johor Bahru, Malaysia
Yusuf, Zakariah
[1
]
机构:
[1] Univ Teknol Malaysia, Fac Elect Engn, Control & Mechatron Engn, Skudai 81310, Johor Bahru, Malaysia
来源:
MODELING, DESIGN AND SIMULATION OF SYSTEMS, ASIASIM 2017, PT II
|
2017年
/
752卷
关键词:
MBR;
SVM;
Neural network;
Filtration process;
D O I:
10.1007/978-981-10-6502-6_42
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Membrane bioreactor (MBR) is one of the advanced and new efficient reliable technology that replace the conventional activated sludge process in wastewater treatment plant. Therefore, understanding of dynamic behaviour of membrane filtration process is crucial to ensure good estimation of the filtration process. This paper presents the support vector machines (SVM) and artificial neural network to model and predict the membrane fouling. The predicted models are validated using an experimental data from a pilot scale palm oil mill effluent MBR located at Process Control Laboratory, Universiti Teknologi Malaysia. Simulation results showed that SVM able to produce good prediction as neural network model.