On the Existence of Ground States for a Nonlinear Klein-Gordon-Maxwell Type System

被引:0
作者
Colin, Mathieu [1 ,2 ]
Watanabe, Tatsuya
机构
[1] Equipe INRIA CARDAMOM, 200 Ave Vieille Tour, F-5251 Talence, France
[2] Bordeaux INP, UMR 5251, F-F33400 Talence, France
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2018年 / 61卷 / 01期
关键词
Klein-Gordon-Maxwell system; Standing waves; Ground states; Constraint minimization method; CONCENTRATION-COMPACTNESS PRINCIPLE; LOCAL WELL-POSEDNESS; SOLITARY WAVES; EQUATIONS; NONEXISTENCE; CALCULUS; SOLITONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a nonlinear Klein-Gordon equation coupled with a Maxwell equation. Introducing a new constraint minimization problem, we prove the existence of ground states for an associated stationary elliptic system.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 22 条
[1]  
[Anonymous], 2003, Adv. Differential Equations
[2]   Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system [J].
Azzollini, A. ;
Pisani, L. ;
Pomponio, A. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 :449-463
[3]  
Azzollini A, 2010, TOPOL METHOD NONL AN, V35, P33
[4]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[5]   Hylomorphic solitons and charged Q-balls: Existence and stability [J].
Benci, Vieri ;
Fortunato, Donato .
CHAOS SOLITONS & FRACTALS, 2014, 58 :1-15
[6]   On the existence of stable charged Q-balls [J].
Benci, Vieri ;
Fortunato, Donato .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (09)
[7]   Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with of Maxwell's equations [J].
Cassani, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 58 (7-8) :733-747
[8]   Solitons in quadratic media [J].
Colin, M. ;
Di Menza, L. ;
Saut, J. C. .
NONLINEARITY, 2016, 29 (03) :1000-1035
[9]   Cauchy problem for the nonlinear Klein-Gordon equation coupled with the Maxwell equation [J].
Colin, Mathieu ;
Watanabe, Tatsuya .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (02) :778-796
[10]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906