Specification properties and dense distributional chaos

被引:19
作者
Oprocha, Piotr [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
关键词
distributional chaos; specification property; generalized specification property;
D O I
10.3934/dcds.2007.17.821
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of distributional chaos was introduced by Schweizer and Smital in [Trans. Amer. Math. Soc., 344 (1994) 737] for continuous maps of a compact interval. Further, this notion was generalized to three versions d(1)C d(3)C for maps acting on general compact metric spaces (see e.g. [Chaos Solitons Fractals, 23 (2005) 1581]). The main result of [J. Math. Anal. Appl., 241 (2000) 181] says that a weakened version of the specification property implies existence of a two points scrambled set which exhibits a d(1)C version of distributional chaos. In this article we show that much more complicated behavior is present in that case. Strictly speaking, there exists an uncountable and dense scrambled set consisting of recurrent but not almost periodic points which exhibit uniform d(1)C versions of distributional chaos.
引用
收藏
页码:821 / 833
页数:13
相关论文
共 20 条
  • [1] AOKI N, 1994, RECENT ADV
  • [2] Generalized specification property and distributional chaos
    Balibrea, F
    Schweizer, B
    Sklar, A
    Smítal, J
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (07): : 1683 - 1694
  • [3] The three versions of distributional chaos
    Balibrea, F
    Smítal, J
    Stefánková, M
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 23 (05) : 1581 - 1583
  • [4] BLOCK LS, 1992, LECT NOTES MATH, V1503
  • [5] DECOMPOSITION OF DYNAMICAL-SYSTEMS ON AN INTERVAL
    BLOKH, AM
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1983, 38 (05) : 133 - 134
  • [6] BOWEN R, 1970, P S PUR MATH, V14
  • [7] Denker M., 1976, Ergodic Theory on Compact Spaces, VVol. 527
  • [8] Forti G.L, 2005, AEQUATIONES MATH, V70, P1, DOI [10.1007/s00010-005-2771-0, DOI 10.1007/S00010-005-2771-0]
  • [9] Relations between distributional, Li-Yorke and ω chaos
    Guirao, JLG
    Lampart, M
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 28 (03) : 788 - 792
  • [10] Cocyclic subshifts
    Kwapisz, J
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2000, 234 (02) : 255 - 290