Existence of 3-factors in K1,n-free graphs with connectivity and edge-connectivity conditions

被引:0
作者
Kotani, Keiko [1 ]
Nishida, Shuto [2 ]
机构
[1] Tokyo Univ Sci, Dept Math, Shinjuku Ku, Tokyo 1628601, Japan
[2] Tokyo Univ Sci, Grad Sch Sci, Shinjuku Ku, Tokyo 1628601, Japan
来源
AUSTRALASIAN JOURNAL OF COMBINATORICS | 2021年 / 79卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let t be an integer satisfying t >= 5. We show that if G is a [(t - 1)/3]-connected K-1,K- t-free graph of even order with minimum degree at least [(4t - 1)/3], then G has a 3-factor, and if G is a [(4t - 4)/3]-connected K-1,K-t-free graph of even order, then G has a 3-factor. We also show that if G is a 2-edge-connected K-1,K-4-free graph of even order with minimum degree at least 6, then G has a 3-factor.
引用
收藏
页码:106 / 122
页数:17
相关论文
共 6 条
[1]   The Existence of a 2-Factor in K1,n-Free Graphs with Large Connectivity and Large Edge-Connectivity [J].
Aldred, R. E. L. ;
Egawa, Yoshimi ;
Fujisawa, Jun ;
Ota, Katsuhiro ;
Saito, Akira .
JOURNAL OF GRAPH THEORY, 2011, 68 (01) :77-89
[2]  
Diestel R., 2017, GRAPH THEORY, DOI [10.1007/978-3-662-53622-3, DOI 10.1007/978-3-662-53622-3]
[3]  
Egawa Y., 2013, FAR E J APPL MATH, V79, P127
[4]  
Ota K, 1996, J GRAPH THEOR, V22, P59, DOI 10.1002/(SICI)1097-0118(199605)22:1<59::AID-JGT8>3.0.CO
[5]  
2-K
[6]   THE FACTORS OF GRAPHS [J].
TUTTE, WT .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1952, 4 (03) :314-328