A new technique to solve fuzzy differential equations

被引:0
作者
Ashraf, Samina [1 ]
Ahmed, Imran [2 ]
Rashmanlou, Hossein [3 ]
机构
[1] Queen Mary Coll Women, Dept Math, Lahore, Pakistan
[2] COMSATS Inst Informat Technol, Dept Math, MA Jinnah Campus,Def Rd,Off Raiwind Rd, Lahore, Pakistan
[3] Islamic Azad Univ, Sama Tech & Vocat Training Coll, Sari Branch, Sari, Iran
关键词
Fuzzy differential equations; Zadeh's extension principle; averaging extension principle;
D O I
10.3233/JIFS-171060
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, fuzzy differential equations are approached in a different prospective via the newly introducedAverage Extension Principle (AEP). We prove some concrete results on the existence and uniqueness of the solutions obtained by making use of AEP. We provide some illustrative examples to compare the solutions obtained by AEP and previous techniques.
引用
收藏
页码:2171 / 2176
页数:6
相关论文
共 22 条
  • [1] A full fuzzy method for solving differential equation based on Taylor expansion
    Allahviranloo, T.
    Gouyandeh, Z.
    Armand, A.
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 29 (03) : 1039 - 1055
  • [2] Solving fuzzy differential equations based on the length function properties
    Allahviranloo, T.
    Chehlabi, M.
    [J]. SOFT COMPUTING, 2015, 19 (02) : 307 - 320
  • [3] Solving fuzzy differential equations by differential transformation method
    Allahviranloo, T.
    Kiani, N. A.
    Motamedi, N.
    [J]. INFORMATION SCIENCES, 2009, 179 (07) : 956 - 966
  • [4] BASSANEZI RC, 1995, KYBERNETES, V24, P91, DOI 10.1108/03684929510095702
  • [5] First order linear fuzzy differential equations under generalized differentiability
    Bede, Barnabas
    Rudas, Imre J.
    Bencsik, Attila L.
    [J]. INFORMATION SCIENCES, 2007, 177 (07) : 1648 - 1662
  • [6] On new solutions of fuzzy differential equations
    Chalco-Cano, Y.
    Roman-Flores, H.
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 38 (01) : 112 - 119
  • [7] The extension principle and a decomposition of fuzzy sets
    Chalco-Cano, Y.
    Roman-Flores, H.
    Rojas-Medar, M.
    Saavedra, O. R.
    Jimenez-Gamero, M. D.
    [J]. INFORMATION SCIENCES, 2007, 177 (23) : 5394 - 5403
  • [8] Comparation between some approaches to solve fuzzy differential equations
    Chalco-Cano, Y.
    Roman-Flores, H.
    [J]. FUZZY SETS AND SYSTEMS, 2009, 160 (11) : 1517 - 1527
  • [9] Time-dependent differential inclusions, cocycle attractors and fuzzy differential equations
    Diamond, P
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (06) : 734 - 740
  • [10] Hartman P., 2002, ORDINARY DIFFERENTIA, V2nd edn