Edge Modes, Degeneracies, and Topological Numbers in Non-Hermitian Systems

被引:652
作者
Leykam, Daniel [1 ]
Bliokh, Konstantin Y. [2 ,3 ]
Huang, Chunli [1 ,4 ]
Chong, Y. D. [1 ,5 ]
Nori, Franco [2 ,6 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[2] RIKEN, CEMS, Wako, Saitama 3510198, Japan
[3] Australian Natl Univ, Nonlinear Phys Ctr, RSPE, Canberra, ACT 0200, Australia
[4] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan
[5] Nanyang Technol Univ, Ctr Disrupt Photon Technol, Singapore 637371, Singapore
[6] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
新加坡国家研究基金会; 澳大利亚研究理事会;
关键词
EXCEPTIONAL POINTS; MAGNETIC-FIELD; SUPERCONDUCTORS; INSULATORS; SOLITONS; PHYSICS; STATES;
D O I
10.1103/PhysRevLett.118.040401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze chiral topological edge modes in a non-Hermitian variant of the 2D Dirac equation. Such modes appear at interfaces between media with different "masses" and/or signs of the "non-Hermitian charge." The existence of these edge modes is intimately related to exceptional points of the bulk Hamiltonians, i.e., degeneracies in the bulk spectra of the media. We find that the topological edge modes can be divided into three families ("Hermitian-like," "non-Hermitian," and "mixed"); these are characterized by two winding numbers, describing two distinct kinds of half-integer charges carried by the exceptional points. We show that all the above types of topological edge modes can be realized in honeycomb lattices of ring resonators with asymmetric or gain-loss couplings.
引用
收藏
页数:6
相关论文
共 46 条
[1]   GROUND-STATE OF A SPIN-1-2 CHARGED-PARTICLE IN A 2-DIMENSIONAL MAGNETIC-FIELD [J].
AHARONOV, Y ;
CASHER, A .
PHYSICAL REVIEW A, 1979, 19 (06) :2461-2462
[2]   PT-symmetric graphene under a magnetic field [J].
Bagarello, Fabio ;
Hatano, Naomichi .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2193)
[3]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[4]   Physics of nonhermitian degeneracies [J].
Berry, MV .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (10) :1039-1047
[5]   Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics [J].
Cao, Hui ;
Wiersig, Jan .
REVIEWS OF MODERN PHYSICS, 2015, 87 (01) :61-111
[6]   Tachyonic dispersion in coherent networks [J].
Chong, Y. D. ;
Rechtsman, M. C. .
JOURNAL OF OPTICS, 2016, 18 (01)
[7]   Zak phase and the existence of edge states in graphene [J].
Delplace, P. ;
Ullmo, D. ;
Montambaux, G. .
PHYSICAL REVIEW B, 2011, 84 (19)
[8]   Encircling an exceptional point -: art. no. 056216 [J].
Dembowski, C ;
Dietz, B ;
Gräf, HD ;
Harney, HL ;
Heine, A ;
Heiss, WD ;
Richter, A .
PHYSICAL REVIEW E, 2004, 69 (05) :7
[9]   Observation of a chiral state in a microwave cavity -: art. no. 034101 [J].
Dembowski, C ;
Dietz, B ;
Gräf, HD ;
Harney, HL ;
Heine, A ;
Heiss, WD ;
Richter, A .
PHYSICAL REVIEW LETTERS, 2003, 90 (03) :4
[10]   Singular Optics: Optical Vortices and Polarization Singularities [J].
Dennis, Mark R. ;
O'Holleran, Kevin ;
Padgett, Miles J. .
PROGRESS IN OPTICS, VOL 53, 2009, 53 :293-363