Inference of gene regulatory networks based on nonlinear ordinary differential equations

被引:40
作者
Ma, Baoshan [1 ]
Fang, Mingkun [1 ]
Jiao, Xiangtian [1 ]
机构
[1] Dalian Maritime Univ, Coll Informat Sci & Technol, Dalian 116026, Peoples R China
基金
中国国家自然科学基金;
关键词
MODEL;
D O I
10.1093/bioinformatics/btaa032
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Gene regulatory networks (GRNs) capture the regulatory interactions between genes, resulting from the fundamental biological process of transcription and translation. In some cases, the topology of GRNs is not known, and has to be inferred from gene expression data. Most of the existing GRNs reconstruction algorithms are either applied to time-series data or steady-state data. Although time-series data include more information about the system dynamics, steady-state data imply stability of the underlying regulatory networks. Results: In this article, we propose a method for inferring GRNs from time-series and steady-state data jointly. We make use of a non-linear ordinary differential equations framework to model dynamic gene regulation and an importance measurement strategy to infer all putative regulatory links efficiently. The proposed method is evaluated extensively on the artificial DREAM4 dataset and two real gene expression datasets of yeast and Escherichia coli. Based on public benchmark datasets, the proposed method outperforms other popular inference algorithms in terms of overall score. By comparing the performance on the datasets with different scales, the results show that our method still keeps good robustness and accuracy at a low computational complexity.
引用
收藏
页码:4885 / 4893
页数:9
相关论文
共 39 条
[1]   Evolutionary modeling and inference of gene network [J].
Ando, S ;
Sakamoto, E ;
Iba, H .
INFORMATION SCIENCES, 2002, 145 (3-4) :237-259
[2]   Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast [J].
Balaji, S. ;
Babu, M. Madan ;
Iyer, Lakshminarayan M. ;
Luscombe, Nicholas M. ;
Aravind, L. .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 360 (01) :213-227
[3]   How to infer gene networks from expression profiles [J].
Bansal, Mukesh ;
Belcastro, Vincenzo ;
Ambesi-Impiombato, Alberto ;
di Bernardo, Diego .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
[4]   A review on the computational approaches for gene regulatory network construction [J].
Chai, Lian En ;
Loh, Swee Kuan ;
Low, Swee Thing ;
Mohamad, Mohd Saberi ;
Denis, Safaai ;
Zakaria, Zalmiyah .
COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 48 :55-65
[5]  
Chen T, 2016, ery and Data Mining, V785, P785, DOI [DOI 10.1145/2939672.2939785, 10.1145/2939672.2939785]
[6]   Computational methods for Gene Regulatory Networks reconstruction and analysis: A review [J].
Delgado, Fernando M. ;
Gomez-Vela, Francisco .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2019, 95 :133-145
[7]   HiDi: an efficient reverse engineering schema for large-scale dynamic regulatory network reconstruction using adaptive differentiation [J].
Deng, Yue ;
Zenil, Hector ;
Tegner, Jesper ;
Kiani, Narsis A. .
BIOINFORMATICS, 2017, 33 (24) :3964-3972
[8]   Secure Transmission for Downlink NOMA Visible Light Communication Networks [J].
Du, Chun ;
Zhang, Fan ;
Ma, Shuai ;
Tang, Yixiao ;
Li, Hang ;
Wang, Hongmei ;
Li, Shiyin .
IEEE ACCESS, 2019, 7 (65332-65341) :65332-65341
[9]   RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond [J].
Gama-Castro, Socorro ;
Salgado, Heladia ;
Santos-Zavaleta, Alberto ;
Ledezma-Tejeida, Daniela ;
Muniz-Rascado, Luis ;
Santiago Garcia-Sotelo, Jair ;
Alquicira-Hernandez, Kevin ;
Martinez-Flores, Irma ;
Pannier, Lucia ;
Castro-Mondragon, Jaime Abraham ;
Medina-Rivera, Alejandra ;
Solano-Lira, Hilda ;
Bonavides-Martinez, Cesar ;
Perez-Rueda, Ernesto ;
Alquicira-Hernandez, Shirley ;
Porron-Sotelo, Liliana ;
Lopez-Fuentes, Alejandra ;
Hernandez-Koutoucheva, Anastasia ;
Del Moral-Chavez, Victor ;
Rinaldi, Fabio ;
Collado-Vides, Julio .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D133-D143
[10]   DREAM4: Combining Genetic and Dynamic Information to Identify Biological Networks and Dynamical Models [J].
Greenfield, Alex ;
Madar, Aviv ;
Ostrer, Harry ;
Bonneau, Richard .
PLOS ONE, 2010, 5 (10)