On a stochastic wave equation in two space dimensions: regularity of the solution and its density

被引:22
作者
Millet, A
Morien, PL
机构
[1] Univ Paris 06, Probabil Lab, CNRS UMR 7599, F-75252 Paris, France
[2] Univ Paris 10, MODAL X, F-92001 Nanterre, France
关键词
stochastic partial differential equation; wave equation; Gaussian noise; Malliavin calculus;
D O I
10.1016/S0304-4149(99)00090-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We pursue the investigation started in a recent paper by Millet and Sanz-Sole (1999, Ann. Probab. 27, 803-844) concerning a non-linear wave equation driven by a Gaussian white noise in time and correlated in the two-dimensional space variable. Under more restrictive conditions on the covariance function of the noise, we prove Holder-regularity properties for both the solution and its density. For the latter, we adapt the method used in a paper by Morien (1999, Bernoulli: Official J. Bernoulli Sec. 5(2), 275-298) based on the Malliavin calculus. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:141 / 162
页数:22
相关论文
共 10 条
[1]   Malliavin calculus for white noise driven parabolic SPDEs [J].
Bally, V ;
Pardoux, E .
POTENTIAL ANALYSIS, 1998, 9 (01) :27-64
[2]  
Dalang RC, 1998, ANN PROBAB, V26, P187
[3]  
DELANG R, 1999, ELECT J PROBAB, V4
[4]  
METIVIER M, 1982, SEMIMARTINGALES GRUY
[5]   A stochastic wave equation in two space dimension:: Smoothness of the law [J].
Millet, A ;
Sanz-Solé, M .
ANNALS OF PROBABILITY, 1999, 27 (02) :803-844
[6]   The Holder and the Besov regularity of the density for the solution of a parabolic stochastic partial differential equation [J].
Morien, PL .
BERNOULLI, 1999, 5 (02) :275-298
[7]  
NUALART D, 1998, LECT NOTES MATH, V1690, P863
[8]  
Nualart D., 1996, MALLIAVIN CALCULUS R, V71, P168
[9]  
PESZAT S, 1998, 584 POL AC SCI I MAT
[10]  
WALSH JB, 1986, LECT NOTES MATH, V1180, P265