Inverse-designed diamond photonics

被引:133
作者
Dory, Constantin [1 ]
Vercruysse, Dries [1 ]
Yang, Ki Youl [1 ]
Sapra, Neil V. [1 ]
Rugar, Alison E. [1 ]
Sun, Shuo [1 ]
Lukin, Daniil M. [1 ]
Piggott, Alexander Y. [1 ]
Zhang, Jingyuan L. [1 ]
Radulaski, Marina [1 ,2 ]
Lagoudakis, Konstantinos G. [1 ,3 ]
Su, Logan [1 ]
Vuckovic, Jelena [1 ]
机构
[1] Stanford Univ, EL Ginzton Lab, Stanford, CA 94305 USA
[2] Univ Calif Davis, Elect & Comp Engn, Davis, CA 95616 USA
[3] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
基金
美国国家科学基金会; 欧盟地平线“2020”;
关键词
QUANTUM EMITTERS; GRATING COUPLERS; HIGH-EFFICIENCY; ENTANGLEMENT; SPINS; QUBITS; DEFECT; FIBER;
D O I
10.1038/s41467-019-11343-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diamond hosts optically active color centers with great promise in quantum computation, networking, and sensing. Realization of such applications is contingent upon the integration of color centers into photonic circuits. However, current diamond quantum optics experiments are restricted to single devices and few quantum emitters because fabrication constraints limit device functionalities, thus precluding color center integrated photonic circuits. In this work, we utilize inverse design methods to overcome constraints of cutting-edge diamond nanofabrication methods and fabricate compact and robust diamond devices with unique specifications. Our design method leverages advanced optimization techniques to search the full parameter space for fabricable device designs. We experimentally demonstrate inverse-designed photonic free-space interfaces as well as their scalable integration with two vastly different devices: classical photonic crystal cavities and inverse-designed waveguide-splitters. The multi-device integration capability and performance of our inverse-designed diamond platform represents a critical advancement toward integrated diamond quantum optical circuits.
引用
收藏
页数:7
相关论文
共 56 条
[41]   Multiple intrinsically identical single-photon emitters in the solid state [J].
Rogers, L. J. ;
Jahnke, K. D. ;
Teraji, T. ;
Marseglia, L. ;
Mueller, C. ;
Naydenov, B. ;
Schauffert, H. ;
Kranz, C. ;
Isoya, J. ;
McGuinness, L. P. ;
Jelezko, F. .
NATURE COMMUNICATIONS, 2014, 5
[42]   Observation of an environmentally insensitive solid-state spin defect in diamond [J].
Rose, Brendon C. ;
Huang, Ding ;
Zhang, Zi-Huai ;
Stevenson, Paul ;
Tyryshkin, Alexei M. ;
Sangtawesin, Sorawis ;
Srinivasan, Srikanth ;
Loudin, Lorne ;
Markham, Matthew L. ;
Edmonds, Andrew M. ;
Twitchen, Daniel J. ;
Lyon, Stephen A. ;
de Leon, Nathalie P. .
SCIENCE, 2018, 361 (6397) :60-63
[43]   Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures [J].
Schroeder, Tim ;
Trusheim, Matthew E. ;
Walsh, Michael ;
Li, Luozhou ;
Zheng, Jiabao ;
Schukraft, Marco ;
Sipahigil, Alp ;
Evans, Ruffin E. ;
Sukachev, Denis D. ;
Nguyen, Christian T. ;
Pacheco, Jose L. ;
Camacho, Ryan M. ;
Bielejec, Edward S. ;
Lukin, Mikhail D. ;
Englund, Dirk .
NATURE COMMUNICATIONS, 2017, 8 :1-7
[44]   An integrated diamond nanophotonics platform for quantum-optical networks [J].
Sipahigil, A. ;
Evans, R. E. ;
Sukachev, D. D. ;
Burek, M. J. ;
Borregaard, J. ;
Bhaskar, M. K. ;
Nguyen, C. T. ;
Pacheco, J. L. ;
Atikian, H. A. ;
Meuwly, C. ;
Camacho, R. M. ;
Jelezko, F. ;
Bielejec, E. ;
Park, H. ;
Loncar, M. ;
Lukin, M. D. .
SCIENCE, 2016, 354 (6314) :847-850
[45]   Quantum Interference of Single Photons from Remote Nitrogen-Vacancy Centers in Diamond [J].
Sipahigil, A. ;
Goldman, M. L. ;
Togan, E. ;
Chu, Y. ;
Markham, M. ;
Twitchen, D. J. ;
Zibrov, A. S. ;
Kubanek, A. ;
Lukin, M. D. .
PHYSICAL REVIEW LETTERS, 2012, 108 (14)
[46]   Controlling the coherence of a diamond spin qubit through its strain environment [J].
Sohn, Young-Ik ;
Meesala, Srujan ;
Pingault, Benjamin ;
Atikian, Haig A. ;
Holzgrafe, Jeffrey ;
Gundogan, Mustafa ;
Stavrakas, Camille ;
Stanley, Megan J. ;
Sipahigil, Alp ;
Choi, Joonhee ;
Zhang, Mian ;
Pacheco, Jose L. ;
Abraham, John ;
Bielejec, Edward ;
Lukin, Mikhail D. ;
Atature, Mete ;
Loncar, Marko .
NATURE COMMUNICATIONS, 2018, 9
[47]   Fully-automated optimization of grating couplers [J].
Su, Logan ;
Trivedi, Rahul ;
Sapra, Neil V. ;
Piggott, Alexander Y. ;
Vercruysse, Dries ;
Vuckovic, Jelena .
OPTICS EXPRESS, 2018, 26 (04) :4023-4034
[48]   Cavity-Enhanced Raman Emission from a Single Color Center in a Solid [J].
Sun, Shuo ;
Zhang, Jingyuan Linda ;
Fischer, Kevin A. ;
Burek, Michael J. ;
Dory, Constantin ;
Lagoudakis, Konstantinos G. ;
Tzeng, Yan-Kai ;
Radulaski, Marina ;
Kelaita, Yousif ;
Safavi-Naeini, Amir ;
Shen, Zhi-Xun ;
Melosh, Nicholas A. ;
Chu, Steven ;
Loncar, Marko ;
Vuckovic, Jelena .
PHYSICAL REVIEW LETTERS, 2018, 121 (08)
[49]   NONLINEAR OPTICS Attosecond nanophotonics [J].
Vampa, Giulio ;
Fattahi, Hanieh ;
Vuckovic, Jelena ;
Krausz, Ferenc .
NATURE PHOTONICS, 2017, 11 (04) :210-212
[50]   Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides [J].
Van Laere, Frederik ;
Roelkens, Guenther ;
Ayre, Melanie ;
Schrauwen, Jonathan ;
Taillaert, Dirk ;
Van Thourhout, Dries ;
Krauss, Thomas E. ;
Baets, Roe .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2007, 25 (01) :151-156