Overdetermined problems with possibly degenerate ellipticity, a geometric approach

被引:56
作者
Fragala, Ilaria
Gazzola, Filippo
Kawohl, Bernd [1 ]
机构
[1] Univ Cologne, Math Inst, D-50923 Cologne, Germany
[2] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
overdetermined boundary value problem; degenerate elliptic operators;
D O I
10.1007/s00209-006-0937-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an open bounded connected subset Omega of R-n, we consider the over-determined boundary value problem obtained by adding both zero Dirichlet and constant Neumann boundary data to the elliptic equation-div(A(vertical bar del u vertical bar)del u) = 1 in Omega. We prove that, if this problem admits a solution in a suitable weak sense, then Omega is a ball. This is obtained under fairly general assumptions on Omega and A. In particular, A may be degenerate and no growth condition is required. Our method of proof is quite simple. It relies on a maximum principle for a suitable P-function, combined with some geometric arguments involving the mean curvature of partial derivative Omega.
引用
收藏
页码:117 / 132
页数:16
相关论文
共 33 条
[1]  
Aleksandrov A. D., 1958, VESTNIK LENINGRAD U, V13, P5
[2]  
Alexandrov, 1962, ANN MAT PUR APPL, V58, P303, DOI [10.1007/BF02413056, DOI 10.1007/BF02413056]
[3]   Soliton like solutions of a Lorentz invariant equation in dimension 3 [J].
Benci, V ;
Fortunato, D ;
Pisani, L .
REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (03) :315-344
[4]   Solitons in several space dimensions: Derrick's problem and infinitely many solutions [J].
Benci, V ;
D'Avenia, P ;
Fortunato, D ;
Pisani, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 154 (04) :297-324
[5]  
Berestycki H., 1991, Bol Soc Brasileira Mat, V22, P1, DOI DOI 10.1007/BF01244896
[6]  
Brock F., 2002, REND CIRC MAT PALERM, P375, DOI DOI 10.1007/BF02871848
[7]  
BROTHERS JE, 1988, J REINE ANGEW MATH, V384, P153
[8]  
Cheeger J., 1969, Problems in Analysis, P195
[9]   Use of the domain derivative to prove symmetry results in partial differential equations [J].
Choulli, M ;
Henrot, A .
MATHEMATISCHE NACHRICHTEN, 1998, 192 :91-103
[10]  
Crasta G, 2006, J EUR MATH SOC, V8, P139