On incidence energy of graphs

被引:20
作者
Das, Kinkar Ch. [1 ]
Gutman, Ivan [2 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Univ Kragujevac, Fac Sci, POB 60, Kragujevac 34000, Serbia
基金
新加坡国家研究基金会;
关键词
Graph spectrum; Laplacian spectrum (of graph); Incidence matrix; Incidence energy; Energy (of matrix); SIGNLESS LAPLACIAN EIGENVALUES; SPECTRAL-RADIUS; UPPER-BOUNDS; INVARIANT; COEFFICIENTS; POWERS; TREES; ORDER; SUM;
D O I
10.1016/j.laa.2013.12.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a simple graph with vertex set V = {upsilon(1), upsilon(2),, upsilon(n)} and edge set E = {e(1), e(2),,e(m)}. The incidence matrix I(G) of G is the n x m matrix whose (i, j)-entry is 1 if (i, j)-entry is 1 if upsilon(i) is incident to e(j) and 0 otherwise. The, is incident to e(j) and 0 otherwise. The incidence energy IE of G is the sum of the singular values of I(G). In this paper we give lower and upper bounds for IE in terms of n, m, maximum degree, clique number, independence number, and the first Zagreb index. Moreover, we obtain Nordhaus-Gaddum-type results for IE. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:329 / 344
页数:16
相关论文
共 44 条
[1]   A relation between the Laplacian and signless Laplacian eigenvalues of a graph [J].
Akbari, Saieed ;
Ghorbani, Ebrahim ;
Koolen, Jack H. ;
Oboudi, Mohammad Reza .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (03) :459-464
[2]  
Akbari S, 2010, ELECTRON J COMB, V17
[3]  
[Anonymous], 2009, Analysis of Complex Networks: From Biology to Linguistics, DOI DOI 10.1002/9783527627981.CH7
[4]   A survey of Nordhaus-Gaddum type relations [J].
Aouchiche, Mustapha ;
Hansen, Pierre .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (4-5) :466-546
[5]  
Arsie B., 2012, B ACAD SERBE SCI SMN, V144, P61
[6]  
Bozkurt SB, 2014, MATCH-COMMUN MATH CO, V72, P215
[7]  
Bozkurt SB, 2013, MATCH-COMMUN MATH CO, V70, P143
[8]  
Cvetkovic D, 2010, An Introduction to the Theory of Graph Spectra
[9]  
Das KC, 2013, MATCH-COMMUN MATH CO, V70, P689
[10]  
Das KC, 2013, MATCH-COMMUN MATH CO, V70, P663