Anisotropic limit of the bond-percolation model and conformal invariance in curved geometries -: art. no. 066129

被引:0
|
作者
Deng, YJ
Blöte, HWJ
机构
[1] Delft Univ Technol, Fac Sci Appl, NL-2600 GA Delft, Netherlands
[2] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 06期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the anisotropic limit of the bond-percolation model in d dimensions, which is equivalent to a (d-1)-dimensional quantum q-->1 Potts model. We formulate an efficient Monte Carlo method for this model. Its application shows that the anisotropic model fits well with the percolation universality class in d dimensions. For three-dimensional rectangular geometry, we determine the critical point as t(c)=8.6429(4), and determine the length ratio as alpha(0)=1.5844(3), which relates the anisotropic limit of the percolation model and its isotropic version. On this basis, we simulate critical systems in several curved geometries including a spheroid and a spherocylinder. Using finite-size scaling and the assumption of conformal invariance, we determine the bulk and surface magnetic exponents in two and three dimensions. They are in good agreement with the existing results.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Conformal invariance of the pure spinor superstring in a curved background -: art. no. 041
    Chandía, O
    Vallilo, BC
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (04):
  • [2] Conformal invariance and the Ising model on a spheroid -: art. no. 036107
    Deng, YJ
    Blöte, HWJ
    PHYSICAL REVIEW E, 2003, 67 (03):
  • [3] Conformal invariance of the Ising model in three dimensions -: art. no. 190602
    Deng, YJ
    Blöte, HWJ
    PHYSICAL REVIEW LETTERS, 2002, 88 (19) : 4
  • [4] Aging, phase ordering, and conformal invariance -: art. no. 265701
    Henkel, M
    Pleimling, M
    Godrèche, C
    Luck, JM
    PHYSICAL REVIEW LETTERS, 2001, 87 (26) : 265701 - 1
  • [5] Negative scaling dimensions and conformal invariance at the Nishimori point in the ±J random-bond Ising model -: art. no. 054413
    Merz, F
    Chalker, JT
    PHYSICAL REVIEW B, 2002, 66 (05): : 1 - 5
  • [6] T duality and conformal invariance at two loops -: art. no. 086002
    Parsons, S
    PHYSICAL REVIEW D, 2000, 61 (08):
  • [7] Exact model of conformal quintessence -: art. no. 083511
    Chimento, LP
    Jakubi, AS
    Pavón, D
    PHYSICAL REVIEW D, 2004, 69 (08): : 7
  • [8] Random-bond Potts model in the large-q limit -: art. no. 056122
    Juhász, R
    Rieger, H
    Iglói, F
    PHYSICAL REVIEW E, 2001, 64 (05):
  • [9] Bulk and surface critical behavior of the three-dimensional Ising model and conformal invariance -: art. no. 066116
    Deng, YJ
    Blöte, HWJ
    PHYSICAL REVIEW E, 2003, 67 (06):
  • [10] The conformal limit of the 0A matrix model and string theory on AdS2 -: art. no. 052
    Aharony, O
    Patir, A
    JOURNAL OF HIGH ENERGY PHYSICS, 2005, (11):