Nanocellulose for Energy Storage Systems: Beyond the Limits of Synthetic Materials

被引:204
作者
Kim, Jung-Hwan [1 ]
Lee, Donggue [1 ]
Lee, Yong-Hyeok [1 ]
Chen, Wenshuai [2 ]
Lee, Sang-Young [1 ]
机构
[1] UNIST, Sch Energy & Chem Engn, Dept Energy Engn, Ulsan 44919, South Korea
[2] Northeast Forestry Univ, Key Lab Biobased Mat Sci & Technol, Minist Educ, Harbin 150040, Heilongjiang, Peoples R China
基金
新加坡国家研究基金会;
关键词
bacterial cellulose; cellulose nanocrystals; cellulose nanofibrils; energy storage systems; nanocellulose; LI-ION BATTERIES; BACTERIAL-CELLULOSE; SOLID-STATE; FLEXIBLE SUPERCAPACITORS; ELECTRODE MATERIALS; CARBON NANOFIBERS; OXYGEN REDUCTION; GRAPHENE OXIDE; ANODE MATERIAL; LOW-TORTUOSITY;
D O I
10.1002/adma.201804826
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ongoing surge in demand for high-performance energy storage systems inspires the relentless pursuit of advanced materials and structures. Components of energy storage systems are generally based on inorganic metal compounds, carbonaceous substances, and petroleum-derived hydrocarbon chemicals. These traditional materials, however, may have difficulties fulfilling the ever-increasing requirements of energy storage systems. Recently, nanocellulose has garnered considerable attention as an exceptional 1D element due to its natural abundance, environmental friendliness, recyclability, structural uniqueness, facile modification, and dimensional stability. Recent advances and future outlooks of nanocellulose as a green material for energy storage systems are described, with a focus on its application in supercapacitors, lithium-ion batteries (LIBs), and post-LIBs. Nanocellulose is typically classified as cellulose nanofibril (CNF), cellulose nanocrystal (CNC), and bacterial cellulose (BC). The unusual 1D structure and chemical functionalities of nanocellulose bring unprecedented benefits to the fabrication and performance of energy storage materials and systems, which lie far beyond those achievable with conventional synthetic materials. It is believed that this progress report can stimulate research interests in nanocellulose as a promising material, eventually widening material horizons for the development of next-generation energy storage systems, that will lead us closer to so-called Battery-of-Things (BoT) era.
引用
收藏
页数:16
相关论文
共 121 条
[1]   Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber [J].
Abe, Kentaro ;
Yano, Hiroyuki .
CELLULOSE, 2009, 16 (06) :1017-1023
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]  
Baker C. F., 1997, T 11 FUND RES S CAMB
[4]   In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries [J].
Chai, Jingchao ;
Liu, Zhihong ;
Ma, Jun ;
Wang, Jia ;
Liu, Xiaochen ;
Liu, Haisheng ;
Zhang, Jianjun ;
Cui, Guanglei ;
Chen, Liquan .
ADVANCED SCIENCE, 2017, 4 (02)
[5]   Transparent triboelectric nanogenerator-induced high voltage pulsed electric field for a self-powered handheld printer [J].
Chen, Bo ;
Yang, Ningning ;
Jiang, Qiang ;
Chen, Wenshuai ;
Yang, Ya .
NANO ENERGY, 2018, 44 :468-475
[6]   Highly Conductive, Lightweight, Low-Tortuosity Carbon Frameworks as Ultrathick 3D Current Collectors [J].
Chen, Chaoji ;
Zhang, Ying ;
Li, Yiju ;
Kuang, Yudi ;
Song, Jianwei ;
Luo, Wei ;
Wang, Yanbin ;
Yao, Yonggang ;
Pastel, Glenn ;
Xie, Jia ;
Hu, Liangbing .
ADVANCED ENERGY MATERIALS, 2017, 7 (17)
[7]  
Chen CJ, 2017, ENERG ENVIRON SCI, V10, P538, DOI [10.1039/c6ee03716j, 10.1039/C6EE03716J]
[8]   Three-Dimensional Heteroatom-Doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for Supercapacitors [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Gao, Huai-Ling ;
Yu, Shu-Hong .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (32) :5104-5111
[9]   Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Yao, Wei-Tang ;
Yu, Zi-You ;
Yu, Shu-Hong .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (11) :3331-3338
[10]   Bacterial-Cellulose-Derived Carbon Nanofiber@MnO2 and Nitrogen-Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Guan, Qing-Fang ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2013, 25 (34) :4746-4752