Smooth Exact Traveling Wave Solutions Determined by Singular Nonlinear Traveling Wave Systems: Two Models

被引:3
作者
Li, Jibin [1 ,2 ]
Chen, Guanrong [3 ]
Deng, Shengfu [1 ]
机构
[1] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Fujian, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[3] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2019年 / 29卷 / 04期
基金
中国国家自然科学基金;
关键词
Integrable system; exact solution; homoclinic orbit; heteroclinic orbit; periodic solution; Green-Naghdi equation; Raman soliton model; SOLITONS; EQUATIONS; WATER;
D O I
10.1142/S0218127419500470
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a singular nonlinear traveling wave system of the first class, if there exist two node points of the associated regular system in the singular straight line, then the dynamics of the solutions of the singular system will be very complex. In this paper, two representative nonlinear traveling wave system models (namely, the traveling wave system of Green-Naghdi equations and the traveling wave system of the Raman soliton model for optical metamaterials) are investigated. It is shown that, if there exist two node points of the associated regular system in the singular straight line, then the singular system has no peakon, periodic peakon and compacton solutions, but rather, it has smooth periodic wave, solitary wave and kink wave solutions.
引用
收藏
页数:13
相关论文
共 15 条
[1]   Singular solitons in optical metamaterials by ansatz method and simplest equation approach [J].
Biswas, Anjan ;
Mirzazadeh, M. ;
Savescu, Michelle ;
Milovic, Daniela ;
Khan, Kaisar R. ;
Mahmood, Mohammad F. ;
Belic, Milivoj .
JOURNAL OF MODERN OPTICS, 2014, 61 (19) :1550-1555
[2]   Bright and dark solitons in optical metamaterials [J].
Biswas, Anjan ;
Khan, Kaisar R. ;
Mahmood, Mohammad F. ;
Belic, Milivoj .
OPTIK, 2014, 125 (13) :3299-3302
[3]   TRAVELING WAVE SOLUTIONS OF THE GREEN-NAGHDI SYSTEM [J].
Deng, Shengfu ;
Guo, Boling ;
Wang, Tingchun .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (05)
[4]   SOME TRAVELING WAVE SOLITONS OF THE GREEN-NAGHDI SYSTEM [J].
Deng, Shengfu ;
Guo, Boling ;
Wang, Tingchun .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (02) :575-585
[5]   DERIVATION OF EQUATIONS FOR WAVE-PROPAGATION IN WATER OF VARIABLE DEPTH [J].
GREEN, AE ;
NAGHDI, PM .
JOURNAL OF FLUID MECHANICS, 1976, 78 (NOV23) :237-246
[6]   THEORY OF WATER WAVES [J].
GREEN, AE ;
LAWS, N ;
NAGHDI, PM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1974, 338 (1612) :43-55
[7]  
Li J., 2013, Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions
[8]  
Li J., 2016, INT J BIFURCAT CHAOS, V26
[9]   On a class of singular nonlinear traveling wave equations [J].
Li, Jibin ;
Chen, Guanrong .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (11) :4049-4065
[10]   ON A CLASS OF SINGULAR NONLINEAR TRAVELING WAVE EQUATIONS (II): AN EXAMPLE OF GCKdV EQUATIONS [J].
Li, Jibin ;
Zhang, Yi ;
Zhao, Xiaohua .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (06) :1995-2007