Laminar and turbulent flow modes of cold atmospheric pressure argon plasma jet

被引:28
作者
Basher, Abdulrahman H. [1 ]
Mohamed, Abdel-Aleam H. [1 ,2 ]
机构
[1] Taibah Univ, Fac Sci, Phys Dept, Madinah 42353, South Africa
[2] Beni Suef Univ, Fac Sci, Phys Dept, Bani Suwayf 52511, Egypt
关键词
INHALED NITRIC-OXIDE; LARGE-VOLUME; DISCHARGE; POLYETHYLENE; GENERATION;
D O I
10.1063/1.5012087
中图分类号
O59 [应用物理学];
学科分类号
摘要
Laminar and turbulent flow modes of a cold atmospheric pressure argon plasma jet are investigated in this work. The effects of the gas flow rate, applied voltage, and frequency on each plasma mode and on intermodal transitions are characterized using photographic, electrical, and spectroscopic techniques. Increasing the gas flow rate increases the plasma jet length in the laminar mode. Upon transition to the turbulent mode, increasing the gas flow rate leads to a decrease in the plasma jet length. The flow rate at which the jet transitions from laminar to turbulent increases with the applied voltage. The presence of nitric oxide (NO) radicals is indicated by the emission spectra of the turbulent plasmas only, while excited Ar, N-2, OH, and O excited species are produced in both laminar and turbulent modes. With no distinctive behavior observed upon transition between the two operating modes, the power consumption was found to be insensitive to gas flow rate variation, while the energy density was found to decrease exponentially with the gas flow rate. Rotational and vibrational temperature measurements of the two plasma modes indicated that they are of the nonthermal equilibrium plasma type. Since they offer NO radicals while maintaining the benefits of the laminar plasma jet, the turbulent plasma jet is more useful than its laminar counterpart in biomedical applications. Published by AIP Publishing.
引用
收藏
页数:9
相关论文
共 85 条
[1]   The 2017 Plasma Roadmap: Low temperature plasma science and technology [J].
Adamovich, I. ;
Baalrud, S. D. ;
Bogaerts, A. ;
Bruggeman, P. J. ;
Cappelli, M. ;
Colombo, V. ;
Czarnetzki, U. ;
Ebert, U. ;
Eden, J. G. ;
Favia, P. ;
Graves, D. B. ;
Hamaguchi, S. ;
Hieftje, G. ;
Hori, M. ;
Kaganovich, I. D. ;
Kortshagen, U. ;
Kushner, M. J. ;
Mason, N. J. ;
Mazouffre, S. ;
Thagard, S. Mededovic ;
Metelmann, H-R ;
Mizuno, A. ;
Moreau, E. ;
Murphy, A. B. ;
Niemira, B. A. ;
Oehrlein, G. S. ;
Petrovic, Z. Lj ;
Pitchford, L. C. ;
Pu, Y-K ;
Rauf, S. ;
Sakai, O. ;
Samukawa, S. ;
Starikovskaia, S. ;
Tennyson, J. ;
Terashima, K. ;
Turner, M. M. ;
van de Sanden, M. C. M. ;
Vardelle, A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (32)
[2]   Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon [J].
Begum, Asma ;
Laroussi, Mounir ;
Pervez, Mohammad Rasel .
AIP ADVANCES, 2013, 3 (06)
[3]   Inhaled nitric oxide in cardiac surgery: Evidence or tradition? [J].
Benedetto, Maria ;
Romano, Rosalba ;
Baca, Georgiana ;
Sarridou, Despoina ;
Fischer, Andreas ;
Simon, Andre ;
Marczin, Nandor .
NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 2015, 49 :67-79
[4]   Inhaled nitric oxide: Current clinical concepts [J].
Bhatraju, Pavan ;
Crawford, Jack ;
Hall, Michael ;
Lang, John D., Jr. .
NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 2015, 50 :114-128
[5]   Dynamics of a guided streamer ('plasma bullet') in a helium jet in air at atmospheric pressure [J].
Boeuf, J-P ;
Yang, L. L. ;
Pitchford, L. C. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (01)
[6]   Hybrid Monte Carlo - fluid modeling network for an argon/hydrogen direct current glow discharge [J].
Bogaerts, A ;
Gijbels, R .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2002, 57 (06) :1071-1099
[7]   Characterization of a Cold Atmospheric Pressure Plasma Jet Device Driven by Nanosecond Voltage Pulses [J].
Boselli, Marco ;
Colombo, Vittorio ;
Gherardi, Matteo ;
Laurita, Romolo ;
Liguori, Anna ;
Sanibondi, Paolo ;
Simoncelli, Emanuele ;
Stancampiano, Augusto .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (03) :713-725
[8]   Numerical and experimental study of the dynamics of a μs helium plasma gun discharge with various amounts of N2 admixture [J].
Bourdon, Anne ;
Darny, Thibault ;
Pechereau, Francois ;
Pouvesle, Jean-Michel ;
Viegas, Pedro ;
Iseni, Sylvain ;
Robert, Eric .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (03)
[9]   Schlieren Photography of the Outflow From a Plasma Jet [J].
Bradley, James W. ;
Oh, Jun-Seok ;
Olabanji, Olumuyiwa T. ;
Hale, Craig ;
Mariani, Raffaello ;
Kontis, Konstantinos .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (11) :2312-2313
[10]   Plasma-liquid interactions: a review and roadmap [J].
Bruggeman, P. J. ;
Kushner, M. J. ;
Locke, B. R. ;
Gardeniers, J. G. E. ;
Graham, W. G. ;
Graves, D. B. ;
Hofman-Caris, R. C. H. M. ;
Maric, D. ;
Reid, J. P. ;
Ceriani, E. ;
Rivas, D. Fernandez ;
Foster, J. E. ;
Garrick, S. C. ;
Gorbanev, Y. ;
Hamaguchi, S. ;
Iza, F. ;
Jablonowski, H. ;
Klimova, E. ;
Kolb, J. ;
Krcma, F. ;
Lukes, P. ;
Machala, Z. ;
Marinov, I. ;
Mariotti, D. ;
Thagard, S. Mededovic ;
Minakata, D. ;
Neyts, E. C. ;
Pawlat, J. ;
Petrovic, Z. Lj ;
Pflieger, R. ;
Reuter, S. ;
Schram, D. C. ;
Schroter, S. ;
Shiraiwa, M. ;
Tarabova, B. ;
Tsai, P. A. ;
Verlet, J. R. R. ;
von Woedtke, T. ;
Wilson, K. R. ;
Yasui, K. ;
Zvereva, G. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (05)