Weak convergence in spaces of measures and operators

被引:3
作者
Alimohammady, M [1 ]
机构
[1] Univ Isfahan, Dept Math, Esfahan 81745 163, Iran
关键词
Grothendieck spaces; spaces of measures; spaces of operators;
D O I
10.36045/bbms/1103065864
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
J. K. Brooks and P. W. Lewis have established that if E and E* have RNP, then in M(Sigma, E), m(n) converges weakly to m if and only if m(n)(A) converges weakly to m(A) for each A is an element of Sigma. Assuming the existence of a special]kind of lifting, N. Randrianantoanina and E. Saab have shown an analogous result if E is a dual space. Here we show that for the space M(P(N) E) where E* is a Grothendieck space or E is a Mazur space, this kind of weak convergence is valid. Also some applications for subspaces of L(E, F) similar to the results of N. Kalton and W. Ruess are given.
引用
收藏
页码:465 / 471
页数:7
相关论文
共 20 条
[1]   ON (V) SETS AND PELCZYNSKI PROPERTY (V) [J].
BOMBAL, F .
GLASGOW MATHEMATICAL JOURNAL, 1990, 32 :109-120
[2]   WEAK COMPACTNESS IN SPACE OF VECTOR MEASURES [J].
BROOKS, JK .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 78 (02) :284-&
[3]  
BROOKS JK, 1974, T AM MATH SOC, V192, P139, DOI 10.2307/1996826
[4]   WEAK COMPACTNESS IN SPACES OF COMPACT-OPERATORS AND OF VECTOR-VALUED FUNCTIONS [J].
COLLINS, HS ;
RUESS, W .
PACIFIC JOURNAL OF MATHEMATICS, 1983, 106 (01) :45-71
[5]  
DIESTEL J, 1977, AM MATH SOC PROVIDEN, V15
[6]  
DIESTEL J, 1984, GRADUATE TEXTS MATH
[7]   WHEN DOES CA(SIGMA-X) CONTAIN A COPY OF L-INFINITY OR CO [J].
DREWNOWSKI, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (03) :747-752
[8]   A REMARK ON THE CONTAINMENT OF CO IN SPACES OF COMPACT-OPERATORS [J].
EMMANUELE, G .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 :331-335
[9]   THE (BD) PROPERTY IN L1 (MU,E) [J].
EMMANUELE, G .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (01) :229-230
[10]   SPACES OF COMPACT OPERATORS [J].
KALTON, NJ .
MATHEMATISCHE ANNALEN, 1974, 208 (04) :267-278