Sparsity Learning-Based Multiuser Detection in Grant-Free Massive-Device Multiple Access

被引:74
作者
Ding, Tian [1 ]
Yuan, Xiaojun [2 ]
Liew, Soung Chang [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Informat Engn, Hong Kong, Peoples R China
[2] Univ Elect Sci & Technol China, CINC, Chengdu 610054, Sichuan, Peoples R China
关键词
Massive-device multiple access; multiuser detection; sparsity learning; message passing; JOINT CHANNEL ESTIMATION; SIGNAL-DETECTION; CONNECTIVITY; CHALLENGES; ALGORITHMS;
D O I
10.1109/TWC.2019.2915955
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we study the multiuser detection (MUD) problem for a grant-free massive-device multiple access (MaDMA) system, where a large number of single-antenna user devices transmit sporadic data to a multi-antenna base station (BS). Specifically, we put forth two MUD schemes, termed random sparsity learning multiuser detection (RSL-MUD) and structured sparsity learning multiuser detection (SSL-MUD) for the time-slotted and non-time-slotted grant-free MaDMA systems, respectively. In RSL-MUD, active users generate and transmit data packets with random sparsity. In SSL-MUD, we introduce a sliding-window-based detection framework, and the user signals in each observation window naturally exhibit structured sparsity. We show that by exploiting the sparsity embedded in the user signals, we can recover the user activity state, the channel, and the user data in a single phase, without using pilot signals for channel estimation and/or active user identification. To this end, we develop a message-passing-based statistical inference framework for the BS to blindly detect the user data without any prior knowledge of the identities and the channel state information (CSI) of active users. The simulation results show that our RSL-MUD and SSL-MUD schemes significantly outperform their counterpart schemes in both reducing the transmission overhead and improving the error behavior of the system.
引用
收藏
页码:3569 / 3582
页数:14
相关论文
共 40 条
[1]  
[Anonymous], 2018, P 2018 CHI C HUMAN F, DOI DOI 10.1145/3173574.3173993
[2]  
[Anonymous], 2015, P IEEE GLOB WORKSH D
[3]   Model-Based Compressive Sensing [J].
Baraniuk, Richard G. ;
Cevher, Volkan ;
Duarte, Marco F. ;
Hegde, Chinmay .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) :1982-2001
[4]   A Random Access Protocol for Pilot Allocation in Crowded Massive MIMO Systems [J].
Bjornson, Emil ;
de Carvalho, Elisabeth ;
Sorensen, Jesper H. ;
Larsson, Erik G. ;
Popovski, Petar .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (04) :2220-2234
[5]   Sparse Activity Detection for Massive Connectivity [J].
Chen, Zhilin ;
Sohrabi, Foad ;
Yu, Wei .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (07) :1890-1904
[6]  
Dai LL, 2015, IEEE COMMUN MAG, V53, P74, DOI 10.1109/MCOM.2015.7263349
[7]   Wide-Area Wirelss Communication Challenges for the Internet of Things [J].
Dhillon, Harpreet S. ;
Huang, Howard ;
Viswanathan, Harish .
IEEE COMMUNICATIONS MAGAZINE, 2017, 55 (02) :168-174
[8]   Message-passing algorithms for compressed sensing [J].
Donoho, David L. ;
Maleki, Arian ;
Montanari, Andrea .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (45) :18914-18919
[9]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[10]   Joint Channel Estimation and Multiuser Detection for Uplink Grant-Free NOMA [J].
Du, Yang ;
Dong, Binhong ;
Zhu, Wuyong ;
Gao, Pengyu ;
Chen, Zhi ;
Wang, Xiaodong ;
Fang, Jun .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (04) :682-685