Leveraging Trajectory Prediction for Pedestrian Video Anomaly Detection

被引:10
作者
Kanu-Asiegbu, Asiegbu Miracle [1 ]
Vasudevan, Ram [1 ]
Du, Xiaoxiao [2 ]
机构
[1] Univ Michigan, Mech Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Naval Architecture & Marine Engn, Ann Arbor, MI 48109 USA
来源
2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021) | 2021年
关键词
video anomaly detection; deep learning; localization; trajectory prediction; pedestrian; EVENT DETECTION;
D O I
10.1109/SSCI50451.2021.9660004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video anomaly detection is a core problem in vision. Correctly detecting and identifying anomalous behaviors in pedestrians from video data will enable safety-critical applications such as surveillance, activity monitoring, and human-robot interaction. In this paper, we propose to leverage trajectory localization and prediction for unsupervised pedestrian anomaly event detection. Different than previous reconstruction-based approaches, our proposed framework rely on the prediction errors of normal and abnormal pedestrian trajectories to detect anomalies spatially and temporally. We present experimental results on real-world benchmark datasets on varying timescales and show that our proposed trajectory-predictor-based anomaly detection pipeline is effective and efficient at identifying anomalous activities of pedestrians in videos. Code will be made available at https://github.com/akanuasiegbu/Leveraging-Trajectory-Prediction-for-Pedestrian-Video-Anomaly-Detection.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Robust real-time unusual event detection using multiple fixed-location monitors [J].
Adam, Amit ;
Rivlin, Ehud ;
Shimshoni, Ilan ;
Reinitz, David .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (03) :555-560
[2]  
Bewley A, 2016, IEEE IMAGE PROC, P3464, DOI 10.1109/ICIP.2016.7533003
[3]   Accurate and Diverse Sampling of Sequences based on a "Best of Many" Sample Objective [J].
Bhattacharyya, Apratim ;
Schiele, Bernt ;
Fritz, Mario .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8485-8493
[4]  
Bochkovskiy A., 2020, Technical Report
[5]   Modeling, clustering, and segmenting video with mixtures of dynamic textures [J].
Chan, Antoni B. ;
Vasconcelos, Nuno .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (05) :909-926
[6]   Abnormal Event Detection in Videos Using Spatiotemporal Autoencoder [J].
Chong, Yong Shean ;
Tay, Yong Haur .
ADVANCES IN NEURAL NETWORKS, PT II, 2017, 10262 :189-196
[7]   Enhanced Anomaly Detection via PLS Regression Models and Information Entropy Theory [J].
Harrou, Fouzi ;
Sun, Ying .
2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, :383-388
[8]   Learning Temporal Regularity in Video Sequences [J].
Hasan, Mahmudul ;
Choi, Jonghyun ;
Neumann, Jan ;
Roy-Chowdhury, Amit K. ;
Davis, Larry S. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :733-742
[9]  
Hochreiter S., 1997, Neural Computation, V9, P1735
[10]  
Idé T, 2016, IEEE DATA MINING, P955, DOI [10.1109/ICDM.2016.168, 10.1109/ICDM.2016.0119]