Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline

被引:174
作者
Liu, Yu-Lun [1 ,2 ]
Lai, Wei-Sheng [3 ]
Chen, Yu-Sheng [1 ]
Kao, Yi-Lung [1 ]
Yang, Ming-Hsuan [3 ,4 ]
Chuang, Yung-Yu [1 ]
Huang, Jia-Bin [5 ]
机构
[1] Natl Taiwan Univ, Taipei, Taiwan
[2] MediaTek Inc, Hsinchu, Taiwan
[3] Google, Mountain View, CA 94043 USA
[4] UC Merced, Merced, CA USA
[5] Virginia Tech, Blacksburg, VA USA
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2020年
基金
美国国家科学基金会;
关键词
D O I
10.1109/CVPR42600.2020.00172
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recovering a high dynamic range (HDR) image from a single low dynamic range (LDR) input image is challenging due to missing details in under-/over-exposed regions caused by quantization and saturation of camera sensors. In contrast to existing learning-based methods, our core idea is to incorporate the domain knowledge of the LDR image formation pipeline into our model. We model the HDR-to-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization. We then propose to learn three specialized CNNs to reverse these steps. By decomposing the problem into specific sub-tasks, we impose effective physical constraints to facilitate the training of individual sub-networks. Finally, we jointly fine-tune the entire model end-to-end to reduce error accumulation. With extensive quantitative and qualitative experiments on diverse image datasets, we demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.
引用
收藏
页码:1648 / 1657
页数:10
相关论文
共 50 条
[31]   PERCEPTUAL EVALUATION OF SINGLE-IMAGE SUPER-RESOLUTION RECONSTRUCTION [J].
Wang, Guangcheng ;
Li, Leida ;
Li, Qiaohong ;
Gu, Ke ;
Lu, Zhaolin ;
Qian, Jiansheng .
2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, :3145-3149
[32]   Convolutional Mesh Regression for Single-Image Human Shape Reconstruction [J].
Kolotouros, Nikos ;
Pavlakos, Georgios ;
Daniilidis, Kostas .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4496-4505
[33]   Analyser-based mammography using single-image reconstruction [J].
Briedis, D ;
Siu, KKW ;
Paganin, DM ;
Pavlov, KM ;
Lewis, RA .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (15) :3599-3611
[34]   Single-image depth estimation by refined segmentation and consistency reconstruction [J].
Liu, Huajun ;
Lei, Dian ;
Zhu, Qing ;
Sui, Haigang ;
Zhang, Huanran ;
Wang, Ziyan .
SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 90
[35]   Blind single-image super resolution reconstruction with defocus blur [J].
1600, International Frequency Sensor Association (169)
[36]   Fast Single-Image HDR Tone-Mapping by Avoiding Base Layer Extraction [J].
Fahim, Masud An-Nur Islam ;
Jung, Ho Yub .
SENSORS, 2020, 20 (16) :1-16
[37]   Simultaneous compressed sensing and single-image super resolution for SAR image reconstruction [J].
Alaa M. El-Ashkar ;
Taha El Sayed Taha ;
Adel S. El-Fishawy ;
Mohammed Abd-Elnaby ;
Fathi E. Abd El-Samie ;
Walid El-Shafai .
Optical and Quantum Electronics, 2023, 55
[38]   GeoCalib: Learning Single-Image Calibration with Geometric Optimization [J].
Veicht, Alexander ;
Sarlin, Paul-Edouard ;
Lindenberger, Philipp ;
Pollefeys, Marc .
COMPUTER VISION - ECCV 2024, PT XL, 2025, 15098 :1-20
[39]   Simultaneous compressed sensing and single-image super resolution for SAR image reconstruction [J].
El-Ashkar, Alaa M. M. ;
Taha, Taha El Sayed ;
El-Fishawy, Adel S. S. ;
Abd-Elnaby, Mohammed ;
Abd El-Samie, Fathi E. E. ;
El-Shafai, Walid .
OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (06)
[40]   HDR Reconstruction Based on the Polarization Camera [J].
Wu, Xuesong ;
Zhang, Hong ;
Hu, Xiaoping ;
Shakeri, Moein ;
Fan, Chen ;
Ting, Juiwen .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) :5113-5119