Combinatorial Analysis of Growth Models for Series-Parallel Networks

被引:1
|
作者
Kuba, Markus [1 ]
Panholzer, Alois [2 ]
机构
[1] Univ Appl Sci, Technikum Wien, Inst Appl Math & Nat Sci, Hochstadtpl 5, A-1200 Vienna, Austria
[2] Tech Univ Wien, Inst Diskrete Math & Geometrie, Wiedner Hauptstr 8-10-104, A-1040 Vienna, Austria
来源
COMBINATORICS PROBABILITY & COMPUTING | 2019年 / 28卷 / 04期
关键词
TREES; LEVEL;
D O I
10.1017/S096354831800038X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give combinatorial descriptions of two stochastic growth models for series-parallel networks introduced by Hosam Mahmoud by encoding the growth process via recursive tree structures. Using decompositions of the tree structures and applying analytic combinatorics methods allows a study of quantities in the corresponding series-parallel networks. For both models we obtain limiting distribution results for the degree of the poles and the length of a random source-to-sink path, and furthermore we get asymptotic results for the expected number of source-to-sink paths. Moreover, we introduce generalizations of these stochastic models by encoding the growth process of the networks via further important increasing tree structures.
引用
收藏
页码:574 / 599
页数:26
相关论文
共 50 条
  • [21] LINEAR-TIME COMPUTABILITY OF COMBINATORIAL PROBLEMS ON SERIES-PARALLEL GRAPHS
    TAKAMIZAWA, K
    NISHIZEKI, T
    SAITO, N
    JOURNAL OF THE ACM, 1982, 29 (03) : 623 - 641
  • [22] Analysis of series resonant converter with series-parallel connection
    Lin, Bor-Ren
    Huang, Chien-Lan
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2011, 98 (02) : 249 - 262
  • [23] MINIMUM COST FLOW ALGORITHMS FOR SERIES-PARALLEL NETWORKS
    BEIN, WW
    BRUCKER, P
    TAMIR, A
    DISCRETE APPLIED MATHEMATICS, 1985, 10 (02) : 117 - 124
  • [24] GEOMETRIC CHARACTERIZATION OF SERIES-PARALLEL VARIABLE RESISTOR NETWORKS
    BRYANT, RE
    TYGAR, JD
    HUANG, LP
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1994, 41 (11): : 686 - 698
  • [25] OPTIMAL REDUNDANCY ALLOCATION FOR NON SERIES-PARALLEL NETWORKS
    BANERJEE, SK
    RAJAMANI, K
    DESHPANDE, SS
    IEEE TRANSACTIONS ON RELIABILITY, 1976, 25 (02) : 115 - 118
  • [26] Asymptotic bounds of throughput in series-parallel queueing networks
    Univ of Massachusetts, Amherst, United States
    Computers and Operations Research, 1995, 22 (10): : 1057 - 1073
  • [27] The recognition of double Euler trails in series-parallel networks
    Ho, TY
    Sung, TY
    Hsu, LH
    Tsai, CH
    Hwang, JY
    JOURNAL OF ALGORITHMS, 1998, 28 (02) : 216 - 257
  • [28] REMARK ON A NEW OPERATION FOR ANALYZING SERIES-PARALLEL NETWORKS
    KAUFMAN, H
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1963, CT10 (02): : 283 - &
  • [29] Deterministic entanglement distribution on series-parallel quantum networks
    Meng, Xiangyi
    Cui, Yulong
    Gao, Jianxi
    Havlin, Shlomo
    Ruckenstein, Andrei E.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [30] Extended tree contraction for some parallel algorithms on series-parallel networks
    Wang, J.-J.
    Wang, Sh.-Y.
    Hsu, L.-H.
    Sung, T.-Y.
    Journal of Information Science and Engineering, 1997, 13 (04): : 665 - 680