Combinatorial Analysis of Growth Models for Series-Parallel Networks

被引:1
|
作者
Kuba, Markus [1 ]
Panholzer, Alois [2 ]
机构
[1] Univ Appl Sci, Technikum Wien, Inst Appl Math & Nat Sci, Hochstadtpl 5, A-1200 Vienna, Austria
[2] Tech Univ Wien, Inst Diskrete Math & Geometrie, Wiedner Hauptstr 8-10-104, A-1040 Vienna, Austria
来源
COMBINATORICS PROBABILITY & COMPUTING | 2019年 / 28卷 / 04期
关键词
TREES; LEVEL;
D O I
10.1017/S096354831800038X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give combinatorial descriptions of two stochastic growth models for series-parallel networks introduced by Hosam Mahmoud by encoding the growth process via recursive tree structures. Using decompositions of the tree structures and applying analytic combinatorics methods allows a study of quantities in the corresponding series-parallel networks. For both models we obtain limiting distribution results for the degree of the poles and the length of a random source-to-sink path, and furthermore we get asymptotic results for the expected number of source-to-sink paths. Moreover, we introduce generalizations of these stochastic models by encoding the growth process of the networks via further important increasing tree structures.
引用
收藏
页码:574 / 599
页数:26
相关论文
共 50 条