Properties of nonlinear transformations of fractionally integrated processes

被引:50
作者
Dittmann, I [1 ]
Granger, CWJ
机构
[1] Humboldt Univ, Sch Business & Econ, D-10178 Berlin, Germany
[2] Univ Calif San Diego, Dept Econ, La Jolla, CA 92093 USA
关键词
long memory; nonlinearity; non-stationarity; fractional integration;
D O I
10.1016/S0304-4076(02)00089-1
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper shows that the properties of nonlinear transformations of a fractionally integrated process strongly depend on whether the initial series is stationary or not. Transforming a stationary Gaussian I(d) process with d > 0 leads to a long-memory process with the same or a smaller long-memory parameter depending on the Hermite rank of the transformation. Any nonlinear transformation of an antipersistent Gaussian I(d) process is 1(0)). For non-stationary I(d) processes, every polynomial transformation is non-stationary and exhibits a stochastic trend in mean and in variance. In particular, the square of a non-stationary Gaussian I(d) process still has long memory with parameter d, whereas the square of a stationary Gaussian I(d) process shows less dependence than the initial process. Simulation results for other transformations are also discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:113 / 133
页数:21
相关论文
共 19 条
[1]  
[Anonymous], 1987, KENDALLS ADV THEORY
[2]  
[Anonymous], 1970, DISTRIBUTIONS STAT C
[3]   AN EXPANSION FOR SOME 2ND-ORDER PROBABILITY DISTRIBUTIONS AND ITS APPLICATION TO NOISE PROBLEMS [J].
BARRETT, JF ;
LAMPARD, DG .
IRE TRANSACTIONS ON INFORMATION THEORY, 1955, 1 (01) :10-15
[4]   ON EXACT COVARIANCE OF PRODUCTS OF RANDOM VARIABLES [J].
BOHRNSTE.GW ;
GOLDBERG.AS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1969, 64 (328) :1439-&
[5]  
Cramer H., 1946, Mathematical Methods of Statistics
[6]  
Deo R., 1998, J TIME SER ANAL, V19, P19, DOI [DOI 10.1111/1467-9892.00075, 10.1111/1467-9892.00075]
[7]   Long memory and regime switching [J].
Diebold, FX ;
Inoue, A .
JOURNAL OF ECONOMETRICS, 2001, 105 (01) :131-159
[8]  
Geweke J., 1983, J TIME SER ANAL, V4, P221, DOI DOI 10.1111/J.1467-9892.1983.TB00371.X
[9]   CLT AND OTHER LIMIT-THEOREMS FOR FUNCTIONALS OF GAUSSIAN-PROCESSES [J].
GIRAITIS, L ;
SURGAILIS, D .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (02) :191-212
[10]  
Gradshteyn I. S., 1980, TABLE INTEGRALS SERI