On boundedness of the Hilbert transform on Marcinkiewicz spaces

被引:1
作者
Bekbayev, N. T. [1 ,2 ]
Tulenov, K. S. [1 ,2 ]
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[2] Al Farabi Kazakh Natl Univ, Alma Ata, Kazakhstan
来源
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS | 2020年 / 100卷 / 04期
关键词
rearrangement-invariant Banach function space; Hilbert transform; Calderon operator; Marcinkiewicz space; OPERATORS; THEOREM;
D O I
10.31489/2020M4/26-32
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study boundedness properties of the classical (singular) Hilbert transform (Hf)(t) = p.v.1/pi integral(R) f(s)/t - s ds acting on Marcinkiewicz spaces. The Hilbert transform is a linear operator which arises from the study of boundary values of the real and imaginary parts of analytic functions. Questions involving the H arise therefore from the utilization of complex methods in Fourier analysis, for example. In particular, the H plays the crucial role in questions of norm-convergence of Fourier series and Fourier integrals. We consider the problem of what is the least rearrangement-invariant Banach function space F(R) such that H : M-phi(R) -> F(R) is bounded for a fixed Marcinkiewicz space M-phi(R). We also show the existence of optimal rearrangement-invariant Banach function range on Marcinkiewicz spaces. We shall be referring to the space F(R) as the optimal range space for the operator H restricted to the domain M-phi(R) subset of Lambda(phi 0) (R). Similar constructions have been studied by J.Soria and P.Tradacete for the Hardy and Hardy type operators [1]. We use their ideas to obtain analogues of their some results for the H on Marcinkiewicz spaces.
引用
收藏
页码:26 / 32
页数:7
相关论文
共 50 条
  • [41] Marcinkiewicz spaces with variable exponents
    Xia, Liuye
    Han, Yingxiao
    Fang, Mi
    Gao, Hongya
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2025, 32 (02) : 339 - 347
  • [42] Calculating the Hilbert Transform on Spaces With Energy Concentration: Convergence and Divergence Regions
    Boche, Holger
    Pohl, Volker
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (01) : 586 - 603
  • [43] Optimal Orlicz domains in Sobolev embeddings into Marcinkiewicz spaces
    Musil, Vit
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (07) : 2653 - 2690
  • [44] COMPUTING HILBERT TRANSFORM AND SPECTRAL FACTORIZATION FOR SIGNAL SPACES OF SMOOTH FUNCTIONS
    Boche, Holger
    Pohl, Volker
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5300 - 5304
  • [45] Rellich identities for the Hilbert transform
    Carro, Maria J.
    Naibo, Virginia
    Soria-Carro, Maria
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (04)
  • [46] ON THE MAXIMAL DIRECTIONAL HILBERT TRANSFORM
    Laba, I.
    Marinelli, A.
    Pramanik, M.
    [J]. ANALYSIS MATHEMATICA, 2019, 45 (03) : 535 - 568
  • [47] A remark to the L2 boundedness of parametric Marcinkiewicz integral
    Ding, Yong
    Xue, Qingying
    Yabuta, Kozo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) : 691 - 697
  • [48] Boundedness of Marcinkiewicz integrals with mixed homogeneity along compound surfaces
    Zhang, Daiqing
    Liu, Feng
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [49] Primarity of direct sums of Orlicz spaces and Marcinkiewicz spaces
    Ansorena, Jose L.
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (03) : 950 - 969
  • [50] Primarity of direct sums of Orlicz spaces and Marcinkiewicz spaces
    José L. Ansorena
    [J]. Banach Journal of Mathematical Analysis, 2020, 14 : 950 - 969