On boundedness of the Hilbert transform on Marcinkiewicz spaces

被引:1
作者
Bekbayev, N. T. [1 ,2 ]
Tulenov, K. S. [1 ,2 ]
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[2] Al Farabi Kazakh Natl Univ, Alma Ata, Kazakhstan
来源
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS | 2020年 / 100卷 / 04期
关键词
rearrangement-invariant Banach function space; Hilbert transform; Calderon operator; Marcinkiewicz space; OPERATORS; THEOREM;
D O I
10.31489/2020M4/26-32
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study boundedness properties of the classical (singular) Hilbert transform (Hf)(t) = p.v.1/pi integral(R) f(s)/t - s ds acting on Marcinkiewicz spaces. The Hilbert transform is a linear operator which arises from the study of boundary values of the real and imaginary parts of analytic functions. Questions involving the H arise therefore from the utilization of complex methods in Fourier analysis, for example. In particular, the H plays the crucial role in questions of norm-convergence of Fourier series and Fourier integrals. We consider the problem of what is the least rearrangement-invariant Banach function space F(R) such that H : M-phi(R) -> F(R) is bounded for a fixed Marcinkiewicz space M-phi(R). We also show the existence of optimal rearrangement-invariant Banach function range on Marcinkiewicz spaces. We shall be referring to the space F(R) as the optimal range space for the operator H restricted to the domain M-phi(R) subset of Lambda(phi 0) (R). Similar constructions have been studied by J.Soria and P.Tradacete for the Hardy and Hardy type operators [1]. We use their ideas to obtain analogues of their some results for the H on Marcinkiewicz spaces.
引用
收藏
页码:26 / 32
页数:7
相关论文
共 50 条
  • [31] On the Boundedness of the Hilbert Transform from Weighted Sobolev Space to Weighted Lebesgue Space
    Vladimir D. Stepanov
    Journal of Fourier Analysis and Applications, 2022, 28
  • [32] SPECTRUM OF THE HILBERT TRANSFORM ON ORLICZ SPACES OVER R
    Akhymbek, M. E.
    Tastankul, R. A.
    Ozbekbay, B. O.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2024, 121 (01): : 3 - 11
  • [33] Spectrum of the Hilbert transform on Lorentz spaces Lp,q
    Akhymbek, Meiram
    Tulenov, Kanat
    Ozbekbay, Bakytzhan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024,
  • [34] Oscillatory hyper-Hilbert transform on Wiener amalgam spaces
    Sun, Wei
    Xie, Ru-Long
    Xu, Liang-Yu
    OPEN MATHEMATICS, 2021, 19 (01): : 1579 - 1587
  • [35] Boundedness of the Commutator of Marcinkiewicz Integral with Rough Variable Kernel
    Chen, Yan Ping
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (06) : 983 - 1000
  • [36] Boundedness of Generalized Parametric Marcinkiewicz Integrals Associated to Surfaces
    Ali, Mohammed
    Al-Refai, Oqlah
    MATHEMATICS, 2019, 7 (10)
  • [37] The Clifford Hilbert transform and Riemann-Hilbert problems associated to the Dirac operator in Lebesgue spaces
    Gu, Longfei
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 364
  • [38] Weighted boundedness for rough Marcinkiewicz integrals with different weights
    Ding, Yong
    Lin, Chin-Cheng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) : 2159 - 2169
  • [39] BOUNDEDNESS OF THE MARCINKIEWICZ INTEGRALS WITH ROUGH KERNEL ASSOCIATED TO SURFACES
    Ding, Yong
    Xue, Qingying
    Yabuta, Kozo
    TOHOKU MATHEMATICAL JOURNAL, 2010, 62 (02) : 233 - 262
  • [40] The Grothendieck property in Marcinkiewicz spaces
    de Pagter, B.
    Sukochev, F. A.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (05): : 791 - 808