On boundedness of the Hilbert transform on Marcinkiewicz spaces

被引:1
|
作者
Bekbayev, N. T. [1 ,2 ]
Tulenov, K. S. [1 ,2 ]
机构
[1] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[2] Al Farabi Kazakh Natl Univ, Alma Ata, Kazakhstan
来源
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS | 2020年 / 100卷 / 04期
关键词
rearrangement-invariant Banach function space; Hilbert transform; Calderon operator; Marcinkiewicz space; OPERATORS; THEOREM;
D O I
10.31489/2020M4/26-32
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study boundedness properties of the classical (singular) Hilbert transform (Hf)(t) = p.v.1/pi integral(R) f(s)/t - s ds acting on Marcinkiewicz spaces. The Hilbert transform is a linear operator which arises from the study of boundary values of the real and imaginary parts of analytic functions. Questions involving the H arise therefore from the utilization of complex methods in Fourier analysis, for example. In particular, the H plays the crucial role in questions of norm-convergence of Fourier series and Fourier integrals. We consider the problem of what is the least rearrangement-invariant Banach function space F(R) such that H : M-phi(R) -> F(R) is bounded for a fixed Marcinkiewicz space M-phi(R). We also show the existence of optimal rearrangement-invariant Banach function range on Marcinkiewicz spaces. We shall be referring to the space F(R) as the optimal range space for the operator H restricted to the domain M-phi(R) subset of Lambda(phi 0) (R). Similar constructions have been studied by J.Soria and P.Tradacete for the Hardy and Hardy type operators [1]. We use their ideas to obtain analogues of their some results for the H on Marcinkiewicz spaces.
引用
收藏
页码:26 / 32
页数:7
相关论文
共 50 条
  • [1] Boundedness of the Hilbert Transform in Besov Spaces
    E. P. Ushakova
    Analysis Mathematica, 2023, 49 : 1137 - 1174
  • [2] BOUNDEDNESS OF THE HILBERT TRANSFORM ON BESOV SPACES
    Maatoug, A.
    Allaoui, S. E.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 12 (02) : 443 - 450
  • [3] Boundedness of the Hilbert Transform in Besov Spaces
    Ushakova, E. P.
    ANALYSIS MATHEMATICA, 2023, 49 (04) : 1137 - 1174
  • [4] Boundedness of the Hilbert transform on weighted Lorentz spaces
    Agora, Elona
    Carro, Maria J.
    Soria, Javier
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) : 218 - 229
  • [5] BOUNDEDNESS OF DISCRETE HILBERT TRANSFORM ON DISCRETE MORREY SPACES
    Aliev, R. A.
    Ahmadova, A. N.
    UFA MATHEMATICAL JOURNAL, 2021, 13 (01): : 98 - 109
  • [6] BOUNDEDNESS OF DISCRETE HILBERT TRANSFORM ON ORLICZ SEQUENCE SPACES
    Aliev, Rashid a.
    Huseynli, Aynur f.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2024, 50 (02): : 213 - 221
  • [7] Boundedness of the Hilbert transform in Lorentz spaces and applications to operator ideals
    Tulenov, K. S.
    QUAESTIONES MATHEMATICAE, 2023, 46 (04) : 813 - 831
  • [8] On the boundedness of the periodic Hilbert transform on generalized periodic Morrey spaces
    Baituyakov, Sheraly
    Baituyakova, Zhuldyz
    Ilyasova, Meruert
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016), 2016, 1759
  • [9] The boundedness of Hilbert transform in the local Morrey-Lorentz spaces
    Aykol, C.
    Guliyev, V. S.
    Kucukaslan, A.
    Serbetci, A.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (04) : 318 - 330
  • [10] A NOTE ON THE BOUNDEDNESS OF THE HILBERT TRANSFORM IN WEIGHTED GRAND LEBESGUE SPACES
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    GEORGIAN MATHEMATICAL JOURNAL, 2009, 16 (03) : 547 - 551