Electrospinning and crossfinking of Zein nanofiber mats

被引:136
作者
Yao, Chen [1 ]
Li, Xinsong [1 ]
Song, Tangying [1 ]
机构
[1] SE Univ, Dept Chem & Chem Engn, Biomat & Drug Delivery Labs, Nanjing 210018, Peoples R China
关键词
biopolymers; fibers; crosslinking;
D O I
10.1002/app.24619
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Electrospinning processing can be applied to fabricate fibrous polymer mats composed of fibers whose diameters range from several microns down to 100 nm or less. In this article, we describe how electrospinning was used to produce zein nanofiber mats and combined with crosslinking to improve the mechanical properties of the as-spun mats. Aqueous ethanol solutions of zein were electrospun, and nanoparticles, nanofiber mats, or ribbonlike nanofiber mats were obtained. The effects of the electrospinning solvent and zein concentration on the morphology of the as-spun nanofiber mats were investigated by morphologies of the electrospun products exhibited a zeindependent concentration. Optimizing conditions for zein produced nanofibers with a diameter of about 500 nm with fewer beads or ribbonlike nanofibers with a diameter of approximately 1-6 mu m. Zein nanofiber mats were crosslinked by hexamethylene diisocyanate (HDI). The tensile strength of the crosslinked electrospun zein nanofiber mats was increased significantly. (C) 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 380-385, 2007
引用
收藏
页码:380 / 385
页数:6
相关论文
共 12 条
[1]   A novel porous cells scaffold made of polylactide-dextran blend by combining phase-separation and particle-leaching techniques [J].
Cai, Q ;
Yang, JA ;
Bei, JZ ;
Wang, SG .
BIOMATERIALS, 2002, 23 (23) :4483-4492
[2]   Controlled deposition of electrospun poly(ethylene oxide) fibers [J].
Deitzel, JM ;
Kleinmeyer, JD ;
Hirvonen, JK ;
Tan, NCB .
POLYMER, 2001, 42 (19) :8163-8170
[3]   Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility [J].
Dong, J ;
Sun, QS ;
Wang, JY .
BIOMATERIALS, 2004, 25 (19) :4691-4697
[4]   Beaded nanofibers formed during electrospinning [J].
Fong, H ;
Chun, I ;
Reneker, DH .
POLYMER, 1999, 40 (16) :4585-4592
[5]   Generation of synthetic elastin-mimetic small diameter fibers and fiber networks [J].
Huang, L ;
McMillan, RA ;
Apkarian, RP ;
Pourdeyhimi, B ;
Conticello, VP ;
Chaikof, EL .
MACROMOLECULES, 2000, 33 (08) :2989-2997
[6]   Engineered collagen-PEO nanofibers and fabrics [J].
Huang, L ;
Nagapudi, K ;
Apkarian, RP ;
Chaikof, EL .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2001, 12 (09) :979-993
[7]   A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J].
Huang, ZM ;
Zhang, YZ ;
Kotaki, M ;
Ramakrishna, S .
COMPOSITES SCIENCE AND TECHNOLOGY, 2003, 63 (15) :2223-2253
[8]   Electrospinning Bombyx mori silk with poly(ethylene oxide) [J].
Jin, HJ ;
Fridrikh, SV ;
Rutledge, GC ;
Kaplan, DL .
BIOMACROMOLECULES, 2002, 3 (06) :1233-1239
[9]   Flat polymer ribbons and other shapes by electrospinning [J].
Koombhongse, S ;
Liu, WX ;
Reneker, DH .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2001, 39 (21) :2598-2606
[10]   Electrospinning of collagen nanofibers [J].
Matthews, JA ;
Wnek, GE ;
Simpson, DG ;
Bowlin, GL .
BIOMACROMOLECULES, 2002, 3 (02) :232-238