Comparison between SAR Soil Moisture Estimates and Hydrological Model Simulations over the Scrivia Test Site

被引:43
作者
Santi, Emanuele [1 ]
Paloscia, Simonetta [1 ]
Pettinato, Simone [1 ]
Notarnicola, Claudia [2 ]
Pasolli, Luca [2 ]
Pistocchi, Alberto [2 ,3 ]
机构
[1] Natl Res Council IFAC CNR, Ist Fis Applicata Nello Carrara, I-50019 Florence, Italy
[2] EURAC Res, Inst Appl Remote Sensing, I-39100 Bolzano, Italy
[3] Gecosistema, R&D Unit Trentino Suedtirol, I-39100 Bolzano, Italy
关键词
SAR data; soil moisture; hydrological model; Artificial Neural Networks; inversion algorithms; REMOTELY-SENSED DATA; BAND SAR; HYDRAULIC CONDUCTIVITY; C-BAND; RETRIEVAL; ASSIMILATION; RADAR;
D O I
10.3390/rs5104961
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, the results of a comparison between the soil moisture content (SMC) estimated from C-band SAR, the SMC simulated by a hydrological model, and the SMC measured on ground are presented. The study was carried out in an agricultural test site located in North-west Italy, in the Scrivia river basin. The hydrological model used for the simulations consists of a one-layer soil water balance model, which was found to be able to partially reproduce the soil moisture variability, retaining at the same time simplicity and effectiveness in describing the topsoil. SMC estimates were derived from the application of a retrieval algorithm, based on an Artificial Neural Network approach, to a time series of ENVISAT/ASAR images acquired over the Scrivia test site. The core of the algorithm was represented by a set of ANNs able to deal with the different SAR configurations in terms of polarizations and available ancillary data. In case of crop covered soils, the effect of vegetation was accounted for using NDVI information, or, if available, for the cross-polarized channel. The algorithm results showed some ability in retrieving SMC with RMSE generally <0.04 m(3)/m(3) and very low bias (i.e., <0.01 m(3)/m(3)), except for the case of VV polarized SAR images: in this case, the obtained RMSE was somewhat higher than 0.04 m(3)/m(3) (0.058 m(3)/m(3)). The algorithm was implemented within the framework of an ESA project concerning the development of an operative algorithm for the SMC retrieval from Sentinel-1 data. The algorithm should take into account the GMES requirements of SMC accuracy (5% in volume), spatial resolution (1 km) and timeliness (3 h from observation). The SMC estimated by the SAR algorithm, the SMC estimated by the hydrological model, and the SMC measured on ground were found to be in good agreement. The hydrological model simulations were performed at two soil depths: 30 and 5 cm and showed that the 30 cm simulations indicated, as expected, SMC values higher than the satellites estimates, with RMSE higher than 0.08 m(3)/m(3). In contrast, in the 5-cm simulations, the agreement between hydrological simulations, satellite estimates and ground measurements could be considered satisfactory, at least in this preliminary comparison, showing a RMSE ranging from 0.054 m(3)/m(3) to 0.051 m(3)/m(3) for comparison with ground measurements and SAR estimates, respectively.
引用
收藏
页码:4961 / 4976
页数:16
相关论文
共 40 条
[1]   VEGETATION MODELED AS A WATER CLOUD [J].
ATTEMA, EPW ;
ULABY, FT .
RADIO SCIENCE, 1978, 13 (02) :357-364
[2]   Soil Moisture Retrieval from Active Spaceborne Microwave Observations: An Evaluation of Current Techniques [J].
Barrett, Brian W. ;
Dwyer, Edward ;
Whelan, Padraig .
REMOTE SENSING, 2009, 1 (03) :210-242
[3]   SEBAL model with remotely sensed data to improve water-resources management under actual field conditions [J].
Bastiaanssen, WGM ;
Noordman, EJM ;
Pelgrum, H ;
Davids, G ;
Thoreson, BP ;
Allen, RG .
JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2005, 131 (01) :85-93
[4]   Semi-distributed, physically based, hydrologic modeling of the Paddle River Basin, Alberta, using remotely sensed data [J].
Biftu, GF ;
Gan, TY .
JOURNAL OF HYDROLOGY, 2001, 244 (3-4) :137-156
[5]  
Bindlish R., 2011, REMOTE SENS ENVIRON, V76, P130
[6]   A new data assimilation approach for improving runoff prediction using remotely-sensed soil moisture retrievals [J].
Crow, W. T. ;
Ryu, D. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2009, 13 (01) :1-16
[7]   Evaluation of the predicted error of the soil moisture retrieval from C-band SAR by comparison against modelled soil moisture estimates over Australia [J].
Doubkova, Marcela ;
van Dijk, Albert I. J. M. ;
Sabel, Daniel ;
Wagner, Wolfgang ;
Bloeschl, Guenter .
REMOTE SENSING OF ENVIRONMENT, 2012, 120 :188-196
[8]   Assimilation of passive and active microwave soil moisture retrievals [J].
Draper, C. S. ;
Reichle, R. H. ;
De Lannoy, G. J. M. ;
Liu, Q. .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39
[9]   Mutual interaction of soil moisture state and atmospheric processes [J].
Entekhabi, D ;
Rodriguez-Iturbe, I ;
Castelli, F .
JOURNAL OF HYDROLOGY, 1996, 184 (1-2) :3-17
[10]   The Soil Moisture Active Passive (SMAP) Mission [J].
Entekhabi, Dara ;
Njoku, Eni G. ;
O'Neill, Peggy E. ;
Kellogg, Kent H. ;
Crow, Wade T. ;
Edelstein, Wendy N. ;
Entin, Jared K. ;
Goodman, Shawn D. ;
Jackson, Thomas J. ;
Johnson, Joel ;
Kimball, John ;
Piepmeier, Jeffrey R. ;
Koster, Randal D. ;
Martin, Neil ;
McDonald, Kyle C. ;
Moghaddam, Mahta ;
Moran, Susan ;
Reichle, Rolf ;
Shi, J. C. ;
Spencer, Michael W. ;
Thurman, Samuel W. ;
Tsang, Leung ;
Van Zyl, Jakob .
PROCEEDINGS OF THE IEEE, 2010, 98 (05) :704-716