Extended Collaborative Representation-Based Hyperspectral Imagery Classification

被引:2
作者
Xie, Bobo [1 ]
Mei, Shaohui [1 ]
Zhang, Ge [1 ]
Zhang, Yifan [1 ]
Feng, Yan [1 ]
Du, Qian [2 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710129, Peoples R China
[2] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
基金
中国国家自然科学基金;
关键词
Dictionaries; Hyperspectral imaging; Training; Collaboration; Estimation; Benchmark testing; Measurement errors; Extended collaborative representation (CR); hyperspectral classification; limited training samples; spectral variation; SPARSE-REPRESENTATION;
D O I
10.1109/LGRS.2022.3159280
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Collaborative representation (CR) has been demonstrated to be very effective for hyperspectral image classification. However, insufficient diversity of training samples often results in limited classification accuracy under small-training-sample conditions, especially when diverse spectral variation is presented in testing samples. In order to alleviate such a problem, a spectral variation augmented-based linear mixed model (SV-LMM) is proposed, in which the spectral variation is extracted by conducting singular value decomposition (SVD) over training samples. Such spectral variation is further utilized to extend the CR for hyperspectral classification. Experiments over two benchmark datasets, i.e., the Pavia Center dataset and the University of Houston dataset, demonstrate that the proposed extended CR-based classifier (ECRC) clearly improves the performance of conventional CRC for hyperspectral classification and outperforms several state-of-the-art algorithms.
引用
收藏
页数:5
相关论文
共 27 条
[1]  
Boardman W., 1989, 1989 IEEE INT GEOSCI, V4, P2069, DOI DOI 10.1109/IGARSS.1989.577779
[2]   Spectral Variability in Hyperspectral Data Unmixing [J].
Borsoi, Ricardo ;
Imbiriba, Tales ;
Bermudez, Jose Carlos ;
Richard, Cedric ;
Chanussot, Jocelyn ;
Drumetz, Lucas ;
Tourneret, Jean-Yves ;
Zare, Alina ;
Jutten, Christian .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2021, 9 (04) :223-270
[3]   Simultaneous Joint Sparsity Model for Target Detection in Hyperspectral Imagery [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) :676-680
[4]   Fusion of Dual Spatial Information for Hyperspectral Image Classification [J].
Duan, Puhong ;
Ghamisi, Pedram ;
Kang, Xudong ;
RastiO, Behnood ;
Li, Shutao ;
Gloaguen, Richard .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09) :7726-7738
[5]   Multichannel Pulse-Coupled Neural Network-Based Hyperspectral Image Visualization [J].
Duan, Puhong ;
Kang, Xudong ;
Li, Shutao ;
Ghamisi, Pedram .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04) :2444-2456
[6]   Kernel Fused Representation-Based Classifier for Hyperspectral Imagery [J].
Gan, Le ;
Du, Peijun ;
Xia, Junshi ;
Meng, Yaping .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) :684-688
[7]   Efficient Superpixel-Level Multitask Joint Sparse Representation for Hyperspectral Image Classification [J].
Li, Jiayi ;
Zhang, Hongyan ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (10) :5338-5351
[8]   Column-generation kernel nonlocal joint collaborative representation for hyperspectral image classification [J].
Li, Jiayi ;
Zhang, Hongyan ;
Zhang, Liangpei .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 94 :25-36
[9]   Structure-Aware Collaborative Representation for Hyperspectral Image Classification [J].
Li, Wei ;
Zhang, Yuxiang ;
Liu, Na ;
Du, Qian ;
Tao, Ran .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09) :7246-7261
[10]   Kernel Collaborative Representation With Tikhonov Regularization for Hyperspectral Image Classification [J].
Li, Wei ;
Du, Qian ;
Xiong, Mingming .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (01) :48-52