Harmonization of radiomic feature distributions: impact on classification of hepatic tissue in CT imaging

被引:15
作者
Beaumont, Hubert [1 ]
Iannessi, Antoine [2 ]
Bertrand, Anne-Sophie [3 ]
Cucchi, Jean Michel [3 ]
Lucidarme, Olivier [4 ]
机构
[1] Median Technol, F-06560 Valbonne, France
[2] Ctr Antoine Lacassagne, F-06100 Nice, France
[3] Ctr Hosp Princesse Grace, Ave Pasteur, MC-98000 Monaco, Monaco
[4] Hop La Pitie Salpetriere, F-75000 Paris, France
关键词
Radiomics; Tomography; X-ray computed; Reproducibility of results; Liver; Pattern recognition; automated;
D O I
10.1007/s00330-020-07641-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives Following the craze for radiomic features (RF), their lack of reliability raised the question of the generalizability of classification models. Inter-site harmonization of images therefore becomes a central issue. We compared RF harmonization processing designed to detect liver diseases in CT images. Methods We retrospectively analyzed 76 multi-center portal CT series of non-diseased (NDL) and diseased liver (DL) patients. In each series, we positioned volumes of interest in spleen and liver, then extracted 9 RF (histogram and texture). We evaluated two RF harmonization approaches. First, in each series, we computed the Z-score of liver measurements based on those computed in the spleen. Second, we evaluated the ComBat method according to each imaging center; parameters were computed in the spleen and applied to the liver. We compared RF distributions and classification performances before/after harmonization. We classified NDL versus spleen and versus DL tissues. Results The RF distributions were all different between liver and spleen (p < 0.05). The Z-score harmonization outperformed for the detection of liver versus spleen: AUC = 93.1% (p < 0.001). For the detection of DL versus NDL, in a case/control setting, we found no differences between the harmonizations: mean AUC = 73.6% (p = 0.49). Using the whole datasets, the performances were improved using ComBat (p = 0.05) AUC = 82.4% and degraded with Z-score AUC = 67.4% (p = 0.008). Conclusions Data harmonization requires to first focus on data structuring to not degrade the performances of subsequent classifications. Liver tissue classification after harmonization of spleen-based RF is a promising strategy for improving the detection of DL tissue. Key Points Variability of acquisition parameter makes radiomics of CT features non-reproducible. Data harmonization can help circumvent the inter-site variability of acquisition protocols. Inter-site harmonization must be carefully implemented and requires designing consistent data sets.
引用
收藏
页码:6059 / 6068
页数:10
相关论文
共 31 条
[1]   Low-dose attenuation correction in diagnosis of non-alcoholic fatty liver disease [J].
Ahmed, Amjad M. ;
Ebid, Mohamed E. ;
Ajlan, Amr M. ;
Al-Mallah, Mouaz H. .
ABDOMINAL RADIOLOGY, 2017, 42 (10) :2454-2459
[2]   Quantification of Heterogeneity as a Biomarker in Tumor Imaging: A Systematic Review [J].
Alic, Lejla ;
Niessen, Wiro J. ;
Veenland, Jifke F. .
PLOS ONE, 2014, 9 (10)
[3]   CT texture analysis in colorectal liver metastases and the surrounding liver parenchyma and its potential as an imaging biomarker of disease aggressiveness, response and survival [J].
Beckers, R. C. J. ;
Trebeschi, S. ;
Maas, M. ;
Schnerr, R. S. ;
Sijmons, J. M. L. ;
Beets, G. L. ;
Houwers, J. B. ;
Beets-Tan, R. G. H. ;
Lambregts, D. M. J. .
EUROPEAN JOURNAL OF RADIOLOGY, 2018, 102 :15-21
[4]   Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters [J].
Berenguer, Roberto ;
del Rosario Pastor-Juan, Maria ;
Canales-Vazquez, Jesus ;
Castro-Garcia, Miguel ;
Villas, Maria Victoria ;
Mansilla Legorburo, Francisco ;
Sabater, Sebastia .
RADIOLOGY, 2018, 288 (02) :407-415
[5]   Extending the scope of pooled analyses of individual patient biomarker data from heterogeneous laboratory platforms and cohorts using merging algorithms [J].
Burke, Orlaith ;
Benton, Samantha ;
Szafranski, Pawel ;
von Dadelszen, Peter ;
Buhimschi, S. Catalin ;
Cetin, Irene ;
Chappell, Lucy ;
Figueras, Francesc ;
Galindo, Alberto ;
Herraiz, Ignacio ;
Holzman, Claudia ;
Hubel, Carl ;
Knudsen, Ulla ;
Kronborg, Camilla ;
Laivuori, Hannele ;
Lapaire, Olav ;
McElrath, Thomas ;
Moertl, Manfred ;
Myers, Jenny ;
Ness, Roberta B. ;
Oliveira, Leandro ;
Olson, Gayle ;
Poston, Lucilla ;
Ris-Stalpers, Carrie ;
Roberts, James M. ;
Schalekamp-Timmermans, Sarah ;
Schlembach, Dietmar ;
Steegers, Eric ;
Stepan, Holger ;
Tsatsaris, Vassilis ;
van der Post, Joris A. ;
Verlohren, Stefan ;
Villa, Pia M. ;
Williams, David ;
Zeisler, Harald ;
Redman, Christopher W. G. ;
Staff, Anne Cathrine .
PREGNANCY HYPERTENSION-AN INTERNATIONAL JOURNAL OF WOMENS CARDIOVASCULAR HEALTH, 2016, 6 (01) :53-59
[6]   Can we trust the calculation of texture indices of CT images? A phantom study [J].
Caramella, Caroline ;
Allorant, Adrien ;
Orlhac, Fanny ;
Bidault, Francois ;
Asselain, Bernard ;
Ammari, Samy ;
Jaranowski, Patricia ;
Moussier, Aurelie ;
Balleyguier, Corinne ;
Lassau, Nathalie ;
Pitre-Champagnat, Stephanie .
MEDICAL PHYSICS, 2018, 45 (04) :1529-1536
[7]   Computer-aided diagnosis of liver tumors on computed tomography images [J].
Chang, Chin-Chen ;
Chen, Hong-Hao ;
Chang, Yeun-Chung ;
Yang, Ming-Yang ;
Lo, Chung-Ming ;
Ko, Wei-Chun ;
Lee, Yee-Fan ;
Liu, Kao-Lang ;
Chang, Ruey-Feng .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 145 :45-51
[8]   Texture analysis of baseline multiphasic hepatic computed tomography images for the prognosis of single hepatocellular carcinoma after hepatectomy: A retrospective pilot study [J].
Chen, Shuting ;
Zhu, Yanjie ;
Liu, Zaiyi ;
Liang, Changhong .
EUROPEAN JOURNAL OF RADIOLOGY, 2017, 90 :198-204
[9]   Radiomics based analysis to predict local control and survival in hepatocellular carcinoma patients treated with volumetric modulated arc therapy [J].
Cozzi, Luca ;
Dinapoli, Nicola ;
Fogliata, Antonella ;
Hsu, Wei-Chung ;
Reggiori, Giacomo ;
Lobefalo, Francesca ;
Kirienko, Margarita ;
Sollini, Martina ;
Franceschini, Davide ;
Comito, Tiziana ;
Franzese, Ciro ;
Scorsetti, Marta ;
Wang, Po-Ming .
BMC CANCER, 2017, 17
[10]   Hepatocellular carcinoma: CT texture analysis as a predictor of survival after surgical resection [J].
Defour, Lucie Brenet ;
Mule, Sebastien ;
Tenenhaus, Arthur ;
Piardi, Tullio ;
Sommacale, Daniele ;
Hoeffel, Christine ;
Thiefin, Gerard .
EUROPEAN RADIOLOGY, 2019, 29 (03) :1231-1239