Interactions of solitons, dromion-like structures and butterfly-shaped pulses for variable coefficient nonlinear Schrodinger equation

被引:23
|
作者
Yu, Weitian [1 ]
Yang, Chunyu [1 ]
Liu, Mengli [1 ]
Zhang, Yujia [1 ]
Liu, Wenjun [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
来源
OPTIK | 2018年 / 159卷
基金
中国国家自然科学基金;
关键词
Solitons; Nonlinear Schrodinger equation; Analytic solution; Hirota method; DISPERSIVE OPTICAL SOLITONS; NONAUTONOMOUS SOLITONS; VARYING DISPERSION; CUBIC NONLINEARITY; HIROTA EQUATION; DARK SOLITONS; FIBER LASERS; SYSTEMS; MODEL; GAIN;
D O I
10.1016/j.ijleo.2018.01.036
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Investigation on interactions Of various types of solitons plays an important role in the analysis of various physical mechanisms. In this paper, analytic two- and three-soliton solutions for the variable coefficient nonlinear Schrodinger (vcNLS) equation are obtained with the help of the Hirota method. Through choosing the related parameters of solutions, we present various types of soliton interactions, and analyze the influence of corresponding parameters on soliton interactions. Periodic and oscillatory interactions between parabolic solitons are observed firstly. The method to control the butterfly-shaped pulse interaction is provided. Those results have guiding effect on controlling the interaction of solitons in nonlinear optics and Bose-Einstein condensation. (C) 2018 Elsevier GmbH. All rights reserved.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 43 条
  • [1] Dromion-like structures in the variable coefficient nonlinear Schrodinger equation
    Liu, Wen-Jun
    Tian, Bo
    Lei, Ming
    APPLIED MATHEMATICS LETTERS, 2014, 30 : 28 - 32
  • [2] Interactions of dromion-like structures in the (1+1) dimension variable coefficient nonlinear Schrodinger equation
    Liu, Wen-Jun
    Huang, Long-Gang
    Li, Yan-Qing
    Pan, Nan
    Lei, Ming
    APPLIED MATHEMATICS LETTERS, 2015, 39 : 91 - 95
  • [3] Dromion-like soliton interactions for nonlinear Schrodinger equation with variable coefficients in inhomogeneous optical fibers
    Liu, Wenjun
    Zhang, Yujia
    Luan, Zitong
    Zhou, Qin
    Mirzazadeh, Mohammad
    Ekici, Mehmet
    Biswas, Anjan
    NONLINEAR DYNAMICS, 2019, 96 (01) : 729 - 736
  • [4] Butterfly-shaped and dromion-like optical similaritons in an asymmetric twin-core fiber amplifier
    Raju, Thokala Soloman
    Myakalwar, Ashwin Kumar
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2023, 40 (10) : 2657 - 2663
  • [5] Dromion-like structures in a cubic-quintic nonlinear Schrodinger equation using analytical methods
    Muniyappan, A.
    Suruthi, A.
    Monisha, B.
    Sharon Leela, N.
    Vijaycharles, J.
    NONLINEAR DYNAMICS, 2021, 104 (02) : 1533 - 1544
  • [6] Butterfly-shaped and dromion-like optical waves in a tapered graded-index waveguide with variable group-velocity dispersion
    Kaur, Harleen
    Pal, Ritu
    Raju, Thokala Soloman
    Kumar, C. N.
    ANNALS OF PHYSICS, 2016, 374 : 366 - 374
  • [7] Dromion-like soliton interactions for nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers
    Wenjun Liu
    Yujia Zhang
    Zitong Luan
    Qin Zhou
    Mohammad Mirzazadeh
    Mehmet Ekici
    Anjan Biswas
    Nonlinear Dynamics, 2019, 96 : 729 - 736
  • [8] Nonautonomous solitons and interactions for a variable-coefficient resonant nonlinear Schrodinger equation
    Li, Min
    Xu, Tao
    Wang, Lei
    Qi, Feng-Hua
    APPLIED MATHEMATICS LETTERS, 2016, 60 : 8 - 13
  • [9] Ultrashort dark solitons interactions and nonlinear tunneling in the modified nonlinear Schrodinger equation with variable coefficient
    Musammil, N. M.
    Porsezian, K.
    Nithyanandan, K.
    Subha, P. A.
    Dinda, P. Tchofo
    OPTICAL FIBER TECHNOLOGY, 2017, 37 : 11 - 20
  • [10] Dromion-like structures and stability analysis in the variable coefficients complex Ginzburg-Landau equation
    Wong, Pring
    Pang, Li-Hui
    Huang, Long-Gang
    Li, Yan-Qing
    Lei, Ming
    Liu, Wen-Jun
    ANNALS OF PHYSICS, 2015, 360 : 341 - 348