Generalizing Zeckendorf's Theorem to f-decompositions

被引:26
作者
Demontigny, Philippe [1 ]
Do, Thao [2 ]
Kulkarni, Archit [3 ]
Miller, Steven J. [1 ]
Moon, David [1 ]
Varma, Umang [4 ]
机构
[1] Williams Coll, Dept Math & Stat, Williamstown, MA 01267 USA
[2] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
[3] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[4] Kalamazoo Coll, Dept Math & Comp Sci, Kalamazoo, MI 49006 USA
基金
美国国家科学基金会;
关键词
Zeckendorf decompositions; EXPANSIONS; NUMBERS;
D O I
10.1016/j.jnt.2014.01.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Text. A beautiful theorem of Zeckendorf states that every positive integer can be uniquely decomposed as a sum of non-consecutive Fibonacci numbers {F-n}, where F-1 = 1, F-2 = 2 and Fn+1 = F-n + Fn-1. For general recurrences {G(n)} with nonnegative coefficients, there is a notion of a legal decomposition which again leads to a unique representation. We consider the converse question: given a notion of legal decomposition, construct a sequence {a(n)}such that every positive integer can be uniquely decomposed as a sum of a(n)'s. We prove this is possible for a notion of legal decomposition called f-decompositions. This notion generalizes existing notions such as base-b representations, Zeckendorf decompositions, and the factorial number system. Using this new perspective, we expand the range of Zeckendorf-type results, generalizing the scope of previous research. Finally, for specific classes of notions of decomposition we prove a Gaussianity result concerning the distribution of the number of summands in the decomposition of a randomly chosen integer. Video. For a video summary of this paper, please click here or visit http://youtu.be/hnYJwvOfzLo. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:136 / 158
页数:23
相关论文
共 24 条
[1]  
Alpert H., 2009, Integers Electron. J. Comb. Number Theory, V9, P745, DOI DOI 10.1515/INTEG.2009.061
[2]  
[Anonymous], 1986, Probability and Measure
[3]  
[Anonymous], J THEOR NR BORDX
[4]  
[Anonymous], 1972, B SOC ROY SCI LIEGE
[5]  
Beckwith O, 2013, FIBONACCI QUART, V51, P13
[6]  
Bower A., 2014, PREPRINT
[7]   A generalization of a theorem of Lekkerkerker to Ostrowski's decomposition of natural numbers [J].
Burger, Edward B. ;
Clyde, David C. ;
Colbert, Cory H. ;
Shin, Gea Hyun ;
Wang, Zhaoning .
ACTA ARITHMETICA, 2012, 153 (03) :217-249
[8]  
Daykin D. E., 1960, J LOND MATH SOC, V35, P143, DOI DOI 10.1112/JLMS/S1-35.2.143
[9]   GENERALIZED ZECKENDORF EXPANSIONS (VOL 7, PG 25, 1994) [J].
FILIPPONI, P ;
GRABNER, PJ ;
NEMES, I ;
PETHO, A ;
TICHY, RF .
APPLIED MATHEMATICS LETTERS, 1994, 7 (06) :25-26
[10]   GAUSSIAN LIMITING DISTRIBUTIONS FOR THE NUMBER OF COMPONENTS IN COMBINATORIAL STRUCTURES [J].
FLAJOLET, P ;
SORIA, M .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1990, 53 (02) :165-182