ADAPTIVE FEM WITH OPTIMAL CONVERGENCE RATES FOR A CERTAIN CLASS OF NONSYMMETRIC AND POSSIBLY NONLINEAR PROBLEMS

被引:60
作者
Feischl, M. [1 ]
Fuehrer, T. [1 ]
Praetorius, D. [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
adaptive algorithm; convergence; optimal cardinality; nonlinear; nonsymmetric; FINITE-ELEMENT-METHOD; INHOMOGENEOUS DIRICHLET DATA; EQUATION;
D O I
10.1137/120897225
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze adaptive mesh-refining algorithms for conforming finite element discretizations of certain nonlinear second-order partial differential equations. We allow continuous polynomials of arbitrary but fixed polynomial order. The adaptivity is driven by the residual error estimator. We prove convergence even with optimal algebraic convergence rates. In particular, our analysis covers general linear second-order elliptic operators. Unlike prior works for linear nonsymmetric operators, our analysis avoids the interior node property for the refinement, and the differential operator has to satisfy a Garding inequality only. If the differential operator is uniformly elliptic, no additional assumption on the initial mesh is posed.
引用
收藏
页码:601 / 625
页数:25
相关论文
共 32 条
[1]  
Ainsworth M., 2000, PURE APPL MATH NY
[2]   EACH H1/2-STABLE PROJECTION YIELDS CONVERGENCE AND QUASI-OPTIMALITY OF ADAPTIVE FEM WITH INHOMOGENEOUS DIRICHLET DATA IN Rd [J].
Aurada, M. ;
Feischl, M. ;
Kemetmueller, J. ;
Page, M. ;
Praetorius, D. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (04) :1207-1235
[3]   Estimator reduction and convergence of adaptive BEM [J].
Aurada, Markus ;
Ferraz-Leite, Samuel ;
Praetorius, Dirk .
APPLIED NUMERICAL MATHEMATICS, 2012, 62 (06) :787-801
[4]  
BABUSKA I, 1984, NUMER MATH, V44, P75, DOI 10.1007/BF01389757
[5]   Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis [J].
Bartels, S ;
Carstensen, C ;
Dolzmann, G .
NUMERISCHE MATHEMATIK, 2004, 99 (01) :1-24
[6]   Optimality of an adaptive finite element method for the p-Laplacian equation [J].
Belenki, Liudmila ;
Diening, Lars ;
Kreuzer, Christian .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (02) :484-510
[7]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[8]   QUASI-OPTIMAL CONVERGENCE RATE OF AN ADAPTIVE DISCONTINUOUS GALERKIN METHOD [J].
Bonito, Andrea ;
Nochetto, Ricardo H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) :734-771
[9]  
Braess D, 2008, MATH COMPUT, V77, P651, DOI 10.1090/S0025-5718-07-02080-7
[10]   Quasi-optimal convergence rate for an adaptive finite element method [J].
Cascon, J. Manuel ;
Kreuzer, Christian ;
Nochetto, Ricardo H. ;
Siebert, Kunibert G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) :2524-2550