Statistical Concurrent Non-malleable Zero-Knowledge from One-Way Functions

被引:1
作者
Kiyoshima, Susumu [1 ]
机构
[1] NTT Secure Platform Labs, Tokyo, Japan
来源
ADVANCES IN CRYPTOLOGY, PT II | 2015年 / 9216卷
关键词
BLACK-BOX CONSTRUCTIONS; ARGUMENTS; PROTOCOLS;
D O I
10.1007/978-3-662-48000-7_5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Concurrent non-malleable zero-knowledge (CNMZK) protocols are zero-knowledge protocols that are secure even when the adversary interacts with multiple provers and verifiers simultaneously. Recently, the first statistical CNMZK argument for NP was constructed by Orlandi et al. (TCC'14) under the DDH assumption. In this paper, we construct a statistical CNMZK argument for NP assuming only the existence of one-way functions. The security is proven via black-box simulation, and the round complexity is poly(n). Under the existence of collision-resistant hash functions, the round complexity can be reduced to.(log n), which is essentially optimal for black-box concurrent zero-knowledge.
引用
收藏
页码:85 / 106
页数:22
相关论文
共 26 条
[1]  
Barak B, 2006, ANN IEEE SYMP FOUND, P345
[2]  
Blum M., 1987, P INT C MATH, P1444
[3]  
Canetti R, 2003, SIAM J COMPUT, V32, P1, DOI 10.1137/S0097539701392949
[4]   Adaptive Hardness and Composable Security in the Plain Model from Standard Assumptions [J].
Canetti, Ran ;
Lin, Huijia ;
Pass, Rafael .
2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, :541-550
[5]   Statistical secrecy and multibit commitments [J].
Damgard, IB ;
Pedersen, TP ;
Pfitzmann, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (03) :1143-1151
[6]   Nonmalleable cryptography [J].
Dolev, D ;
Dwork, C ;
Naor, M .
SIAM JOURNAL ON COMPUTING, 2000, 30 (02) :391-437
[7]   Concurrent zero-knowledge [J].
Dwork, C ;
Naor, M ;
Sahai, A .
JOURNAL OF THE ACM, 2004, 51 (06) :851-898
[8]  
Goyal V, 2007, LECT NOTES COMPUT SC, V4833, P444
[9]  
Goyal V, 2015, LECT NOTES COMPUT SC, V9014, P260, DOI 10.1007/978-3-662-46494-6_12
[10]   STATISTICALLY HIDING COMMITMENTS AND STATISTICAL ZERO-KNOWLEDGE ARGUMENTS FROM ANY ONE-WAY FUNCTION [J].
Haitner, Iftach ;
Nguyen, Minh-Huyen ;
Ong, Shien Jin ;
Reingold, Omer ;
Vadhan, Salil .
SIAM JOURNAL ON COMPUTING, 2009, 39 (03) :1153-1218