Nonlinear evolution of unstable fluid interface

被引:7
作者
Abarzhi, SI [1 ]
机构
[1] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 03期
关键词
D O I
10.1103/PhysRevE.66.036301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the coherent motion of bubbles and spikes in the Richtmyer-Meshkov instability for isotropic three-dimensional and two-dimensional periodic flows. For equations governing the local dynamics of the bubble, we find a family of regular asymptotic solutions parametrized by the principal curvature at the bubble top. The physically significant solution in this family corresponds to a bubble with a flattened surface, not to a bubble with a finite curvature. The evolution of the bubble front is described and the diagnostic parameters are suggested.
引用
收藏
页码:1 / 036301
页数:8
相关论文
共 47 条
[1]  
Abarzhi S. I., 1996, Journal of Experimental and Theoretical Physics, V83, P1012
[2]   Stable steady flows in Rayleigh-Taylor instability [J].
Abarzhi, SI .
PHYSICAL REVIEW LETTERS, 1998, 81 (02) :337-340
[3]   A new type of the evolution of the bubble front in the Richtmyer-Meshkov instability [J].
Abarzhi, SI .
PHYSICS LETTERS A, 2002, 294 (02) :95-100
[4]   Nonlinear three-dimensional Rayleigh-Taylor instability [J].
Abarzhi, SI .
PHYSICAL REVIEW E, 1999, 59 (02) :1729-1735
[5]   Low-symmetric bubbles in Rayleigh-Taylor instability [J].
Abarzhi, SI .
PHYSICS OF FLUIDS, 2001, 13 (08) :2182-2189
[6]  
ABARZHI SI, 2000, PHYS FLUIDS, V11, P1015
[7]  
Aleshin A. N., 1990, Soviet Physics - Doklady, V35, P159
[8]  
Anuchina N.N., 1978, IZV AKAD NAUK SSSR M, V6, P157
[9]   GENERALIZED VORTEX METHODS FOR FREE-SURFACE FLOW PROBLEMS [J].
BAKER, GR ;
MEIRON, DI ;
ORSZAG, SA .
JOURNAL OF FLUID MECHANICS, 1982, 123 (OCT) :477-501
[10]   VORTEX SIMULATIONS OF THE RAYLEIGH-TAYLOR INSTABILITY [J].
BAKER, GR ;
MEIRON, DI ;
ORSZAG, SA .
PHYSICS OF FLUIDS, 1980, 23 (08) :1485-1490