Pulmonary EV miRNA profiles identify disease and distinct inflammatory endotypes in COPD

被引:6
作者
Burke, Hannah [1 ,2 ]
Cellura, Doriana [1 ,2 ]
Freeman, Anna [1 ,2 ]
Hicks, Alex [1 ,2 ]
Ostridge, Kris [1 ,3 ]
Watson, Alastair [1 ,2 ]
Williams, Nicholas P. [1 ,2 ]
Spalluto, C. Mirella [1 ,2 ]
Staples, Karl J. [1 ,2 ]
Wilkinson, Tom M. A. [1 ,2 ]
机构
[1] Univ Southampton, Fac Med, Southampton, England
[2] Univ Hosp Southampton, NIHR Southampton Biomed Res Ctr, Southampton, England
[3] AstraZeneca, BioPharmaceut R&D, Res & Early Dev, Resp & Immunol,Translat Sci & Expt Med, Gothenburg, Sweden
基金
英国惠康基金;
关键词
COPD; extracellular vesicles; microRNA; inflammatory endotypes; early diagnostics; BRONCHOALVEOLAR LAVAGE; ENDOTHELIAL MICROPARTICLES; POTENTIAL BIOMARKER; BLOOD EOSINOPHILS; MESSENGER-RNAS; MICRORNA; MECHANISM; EXOSOMES; SPUTUM;
D O I
10.3389/fmed.2022.1039702
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
IntroductionChronic obstructive pulmonary disease (COPD) is a heterogeneous condition without effective disease modifying therapies. Identification of novel inflammatory endotype markers such as extracellular vesicles (EVs), which are important intercellular messengers carrying microRNA (miRNA), may enable earlier diagnosis and disease stratification for a targeted treatment approach. Our aim was to identify differentially expressed EV miRNA in the lungs of COPD patients compared with healthy ex-smokers and determine whether they can help define inflammatory COPD endotypes. MethodsEV miRNA were isolated and sequenced from ex-smoking COPD patients and healthy ex-smoker bronchoalveolar lavage fluid. Results were validated with RT-qPCR and compared to differential inflammatory cell counts. ResultsExpression analysis identified five upregulated miRNA in COPD (miR-223-3p, miR-2110, miR-182-5p, miR-200b-5p and miR-625-3p) and three downregulated miRNA (miR-138-5p, miR-338-3p and miR-204-5p), all with a log2 fold change of >1/-1, FDR < 0.05. These miRNAs correlated with disease defining characteristics such as FEF 25-75% (a small airways disease measure) and DLCO% (a surrogate measure of emphysema). Receiver operator curve analysis demonstrated miR-2110, miR-223-3p, and miR-182-5p showed excellent combinatory predictive ability (AUC 0.91, p < 0.0001) in differentiating between health and mild COPD. Furthermore, miR-223-3p and miR-338-3p correlated with airway eosinophilia and were able to distinguish "pure eosinophilic" COPD from other airway inflammatory subtypes (AUC 0.94 and 0.85, respectively). DiscussionThis is the first study to identify differentially expressed miRNA in COPD bronchoalveolar lavage fluid EVs. These findings suggest specific lung derived EV miRNA are a strong predictor of disease presence even in mild COPD. Furthermore, specific miRNA correlated with inflammatory cell numbers in COPD, and may have a role in defining inflammatory endotypes for future treatment stratification.
引用
收藏
页数:13
相关论文
共 50 条
[1]   Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid [J].
Admyre, C ;
Grunewald, J ;
Thyberg, J ;
Gripenbäck, S ;
Tornling, G ;
Eklund, A ;
Scheynius, A ;
Gabrielsson, S .
EUROPEAN RESPIRATORY JOURNAL, 2003, 22 (04) :578-583
[2]  
[Anonymous], 2020, World Heal. Organ
[3]   Sputum IL-5 Concentration Is Associated with a Sputum Eosinophilia and Attenuated by Corticosteroid Therapy in COPD [J].
Bafadhel, M. ;
Saha, S. ;
Siva, R. ;
McCormick, M. ;
Monteiro, W. ;
Rugman, P. ;
Dodson, P. ;
Pavord, I. D. ;
Newbold, P. ;
Brightling, C. E. .
RESPIRATION, 2009, 78 (03) :256-262
[4]   Inflammatory mechanisms in patients with chronic obstructive pulmonary disease [J].
Barnes, Peter J. .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2016, 138 (01) :16-27
[5]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[6]   miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis [J].
Condrat, Carmen Elena ;
Thompson, Dana Claudia ;
Barbu, Madalina Gabriela ;
Bugnar, Oana Larisa ;
Boboc, Andreea ;
Cretoiu, Dragos ;
Suciu, Nicolae ;
Cretoiu, Sanda Maria ;
Voinea, Silviu Cristian .
CELLS, 2020, 9 (02)
[7]   Benralizumab for the Prevention of COPD Exacerbations [J].
Criner, G. J. ;
Celli, B. R. ;
Brightling, C. E. ;
Agusti, A. ;
Papi, A. ;
Singh, D. ;
Sin, D. D. ;
Vogelmeier, C. F. ;
Sciurba, F. C. ;
Bafadhel, M. ;
Backer, V ;
Kato, M. ;
Ramirez-Venegas, A. ;
Wei, Y-F ;
Bjermer, L. ;
Shih, V. H. ;
Jison, M. ;
O'Quinn, S. ;
Makulova, N. ;
Newbold, P. ;
Goldman, M. ;
Martin, U. J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (11) :1023-1034
[8]   Interrelationships Among Small Airways Dysfunction, Neutrophilic Inflammation, and Exacerbation Frequency in COPD [J].
Day, Kerry ;
Ostridge, Kristoffer ;
Conway, Joy ;
Cellura, Doriana ;
Watson, Alastair ;
Spalluto, Cosma Mirella ;
Staples, Karl J. ;
Thompson, Bruce ;
Wilkinson, Tom .
CHEST, 2021, 159 (04) :1391-1399
[9]   Gene expression networks in COPD: microRNA and mRNA regulation [J].
Ezzie, Michael E. ;
Crawford, Melissa ;
Cho, Ji-Hoon ;
Orellana, Robert ;
Zhang, Shile ;
Gelinas, Richard ;
Batte, Kara ;
Yu, Lianbo ;
Nuovo, Gerard ;
Galas, David ;
Diaz, Philip ;
Wang, Kai ;
Nana-Sinkam, S. Patrick .
THORAX, 2012, 67 (02) :122-131
[10]   RNA packaging into extracellular vesicles: An orchestra of RNA-binding proteins? [J].
Fabbiano, Fabrizio ;
Corsi, Jessica ;
Gurrieri, Elena ;
Trevisan, Caterina ;
Notarangelo, Michela ;
D'Agostino, Vito G. .
JOURNAL OF EXTRACELLULAR VESICLES, 2020, 10 (02)