Super-Resolution TOA and AOA Estimation for OFDM Radar Systems Based on Compressed Sensing

被引:16
作者
Wu, Min [1 ]
Hao, Chengpeng [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Acoust, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
OFDM; Radar; Estimation; Delay effects; Superresolution; Signal processing algorithms; Antenna arrays; Angle of arrival (AOA); compressed sensing (CS); orthogonal frequency division multiplexing (OFDM); parameter estimation; super-resolution; time of arrival (TOA); DOA ESTIMATION; DIRECTION;
D O I
10.1109/TAES.2022.3178393
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This article presents a compressed sensing-based time of arrival (TOA) and angle-of-arrival (AOA) estimation algorithm for orthogonal frequency division multiplexing (OFDM) radar systems. The algorithm is designed for noncooperative targets based on a uniform linear array using a cyclic prefix (CP) added OFDM signal. The algorithm makes three key technical contributions. First, the algorithm adopts the CP-based OFDM signal for the radar TOA/AOA estimation to suppress the multitarget interference and the impact of time delay on the subcarrier orthogonality. Second, this article exploits the structure of the CP-OFDM radar signal model to construct the optimization problem of the joint TOA/AOA recovery. The super-resolution AOA estimation is obtained by using a redundant dictionary containing much more basis than the number of antennas. Third, the algorithm proposes an efficient way to solve the optimization by utilizing the properties of the circulant matrix, fast Fourier transform, and Hadamard multiplication. The simulation results indicate the effectiveness of the proposed algorithm.
引用
收藏
页码:5730 / 5740
页数:11
相关论文
共 32 条
[1]   ANALYSIS OF BOUNDED VARIATION PENALTY METHODS FOR ILL-POSED PROBLEMS [J].
ACAR, R ;
VOGEL, CR .
INVERSE PROBLEMS, 1994, 10 (06) :1217-1229
[2]   Estimating Angle-of-Arrival and Time-of-Flight for Multipath Components Using WiFi Channel State Information [J].
Ahmed, Afaz Uddin ;
Arablouei, Reza ;
de Hoog, Frank ;
Kusy, Branislav ;
Jurdak, Raja ;
Bergmann, Neil .
SENSORS, 2018, 18 (06)
[3]  
[Anonymous], 2015, PROC IEEE 15 MEDITER, P1
[4]  
Axelsson O., 1994, ITERATIVE SOLUTION M, VFirst, DOI DOI 10.1017/CBO9780511624100
[5]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[6]   Kronecker Compressive Sensing [J].
Duarte, Marco F. ;
Baraniuk, Richard G. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (02) :494-504
[7]   A Study of Wireless Indoor Positioning Based on Joint TDOA and DOA Estimation Using 2-D Matrix Pencil Algorithms and IEEE 802.11ac [J].
Gaber, Abdo ;
Omar, Abbas .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2015, 14 (05) :2440-2454
[8]   Toeplitz and Circulant Matrices: A Review [J].
Gray, Robert M. .
FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY, 2006, 2 (03) :155-239
[9]   Bayesian Compressive Sensing Approaches for Direction of Arrival Estimation With Mutual Coupling Effects [J].
Hawes, Matthew ;
Mihaylova, Lyudmila ;
Septier, Francois ;
Godsill, Simon .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (03) :1357-1368
[10]  
Inserra D., 2019, PROC 23 INT ITG WORK, P1