Robust Mapping Learning for Multi-view Multi-label Classification with Missing Labels

被引:15
作者
Ren, Weijieying [1 ]
Zhang, Lei [2 ]
Jiang, Bo [2 ]
Wang, Zhefeng [1 ]
Guo, Guangming [1 ]
Liu, Guiquan [1 ]
机构
[1] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei, Anhui, Peoples R China
[2] Anhui Univ, Sch Comp Sci & Technol, Hefei, Anhui, Peoples R China
来源
KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2017): 10TH INTERNATIONAL CONFERENCE, KSEM 2017, MELBOURNE, VIC, AUSTRALIA, AUGUST 19-20, 2017, PROCEEDINGS | 2017年 / 10412卷
关键词
Multi-label; Multi-view; Label correlations; Missing labels;
D O I
10.1007/978-3-319-63558-3_46
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The multi-label classification problem has generated significant interest in recent years. Typical scenarios assume each instance can be assigned to a set of labels. Most of previous works regard the original labels as authentic label assignments which ignore missing labels in realistic applications. Meanwhile, few studies handle the data coming from multiple sources (multiple views) to enhance label correlations. In this paper, we propose a new robust method for multi-label classification problem. The proposed method incorporates multiple views into a mixed feature matrix, and augments the initial label matrix with label correlation matrix to estimate authentic label assignments. In addition, a low-rank structure and a manifold regularization are used to further exploit global label correlations and local smoothness. An alternating algorithm is designed to slove the optimization problem. Experiments on three authoritative datasets demonstrate the effectiveness and robustness of our method.
引用
收藏
页码:543 / 551
页数:9
相关论文
共 14 条
[1]   Learning multi-label scene classification [J].
Boutell, MR ;
Luo, JB ;
Shen, XP ;
Brown, CM .
PATTERN RECOGNITION, 2004, 37 (09) :1757-1771
[2]  
Chua T.-S., 2009, P ACM INT C IM VID R, P1
[3]  
Deng C., MULTIVIEW MATRIX DEC
[4]   Sparse Subspace Clustering: Algorithm, Theory, and Applications [J].
Elhamifar, Ehsan ;
Vidal, Rene .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) :2765-2781
[5]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[6]  
FAVARO P, 2011, PROC CVPR IEEE, P1801, DOI DOI 10.1109/CVPR.2011.5995365
[7]  
Huiskes M.J., 2008, P 1 ACM INT C MULT I, P39
[8]  
Jing LP, 2015, PROC CVPR IEEE, P1483, DOI 10.1109/CVPR.2015.7298755
[9]  
Liu M, 2015, AAAI CONF ARTIF INTE, P2778
[10]  
Verma Y, 2012, LECT NOTES COMPUT SC, V7574, P836, DOI 10.1007/978-3-642-33712-3_60